# Lecture 5 Hermitian Matrices

MATRIX ANALYSIS @ HITSZ
TIME: Autumn 2011 INSTRUCTOR: You-Hua Fan

Lecture 5: Hermitian Matrices
?Section 4.1.1~4.1.5 ?Section 7.1.1~7.1.5 ?Section 7.2.1, 7.2,7 ?Section 7.3.5

1

Hermitian matrices form one of the most useful classes of square matrices. There are several very powerful facts about Hermitian matrices that have found universal application.
First the eigenvalues of Hermitian matrices are real.

Second, Hermitian matrices have a complete set of orthogonal eigenvectors, which makes them diagonalizable.
Third, these facts give a spectral representation for Hermitian matrices. In this lecture, without exception the underlying inner product is standard inner product and the underlying vector norm is Euclidean norm || · 2. ||
2

5.1 Diagonalizability of Hermitian Matrices

3

4

5

Let P1 ? [ x1 , u 2 , ? u n ], U 2 ? [ u 2 , ? u n ], then

? ?1 P AP 1 ? ? ?0
* 1

0 ? ?, A1 ?

A1 has the eigenvalue

s of ? 2 , ? , ? n

Just like the proof method for Schur’s theorem, we can find n orthonormal eigenvectors of A, and let A is unitarily equivalent to a diagonal matrix. This means for all eigenvalues.

6

( ii ) Let ? i and u i be the eigenvalue eigenvecto
*

s and pertaining

orthonorma

l

rs of A , then U ? [ u 1 , ? , u n ] is unitary .
* *

U AU ? U A [ u 1 , ? , u n ] ? U [ Au 1 , ? , Au n ] ? u 1* ? ? ? * ? ? ? ? [ ?1u 1 , ? , ? n u n ] ? [ u i ? j u j ] ? ?u * ? ? n? ? ?1 ? ? ? ? ? ? . ? ?n ? ?

?

7

A?

?

n j ?1

? ju ju (?
* j

?

n j ?1

Aj)

where A j is Hermiatian

.

Let U ? [ u 1 , ? , u n ] .

? ?1 A ?U ? ? ? ? ?

? ? U ? ?n ? ?

? ?1
*

? [u1 , ? , u n ]

? ? ? ?

?

? u 1* ? ? ?? ? ? ? ? ? * ? n ? ?u n ? ?? ?

? u 1* ? ? ? ? [ ?1u 1 , ? , ? n u n ] ? ? ? ? ?u * ? ? n?
* * * *

?

n

? ju ju j ?
*

j ?1

?

n

Aj

j ?1

A j ? (? ju ju j ) ? ? ju ju j ? ? ju ju j ? A j .
*

8

5.2 Skew-Hermitian Matrices and Properties of Quadratic Form
Definition 5.2.1. A matrix is Skew -Hermitian if A= –A*. Proposition 5.2.1 (Elementary Facts):

9

Theorem 5.2.1.

(1) If A is Hermitian.

x Ax ? x U ? Ux ? y ? y
* * * *

?

?
i

? i | y i | is real.
2

(2) If x Ax is real . Let A ? H ? iK , where H and K are Hermitian .

*

x Ax ? x ( H ? iK ) x ? x Hx ? ix Kx
* * * *

? 0 ? x Kx ?
*

??

i

| zi |

2

? ?i ? 0 ? K ? V diag ( ? i )V ? 0
*

10

Theorem 5.2.2.

Let A ? H ? iK , where
* *

H and K are Hermitian
* *

.

0 ? x Ax ? x ( H ? iK ) x ? x Hx ? ix Kx ? x Hx ? 0 , x Kx ? 0
* *

? H ? K ?0? A?0

11

( PD , PSD )

12

If A is Hermitian, then A is PD iff every eigenvalue of A is positive.

If B is PD, then any principal submatrix is PD and any principal minor is positive. In particular, diag (B) is positive and det (B) >0. 6. If A is PD then Ak is PD . 7. If A and B are PD then A+B is PD. 8. If A is PD then A=B*B, where B is invertible. 9. If B*B=0, then B=0.

13

Theorem 5.3.2. If A is positive (semi)definite. the square root of A is positive (semi) definite.

A ? U DU ? U diag ( ? i )U
* *

? U diag ( ? i ) diag ( ? i )U
*

? U diag ( ? i )UU diag ( ? i )U
* *

? B ( B ? U diag ( ? i )U )
2 *

B is PD ( PSD ) with eigenvalue

s of

?i .

14

Theorem 5.4.2. (Singular Value Decomposition)

15

are singular values of A.
16

AA is Hermitian,
?D 2 * * U AA U ? ? ?

*

then ? an unitary matrix U ? M
? ? , D ? diag (? 1 , ? , ? k ) 0?
m ,k

m

Let U ? [U 1 , U 2 ], U 1 ? M
* * 2 *

,U 2 ? M
*

m ,m ? k

U 1 AA U 1 ? D , U 2 AA U 2 ? 0 ? U 2 A ? 0
*

Let V1 ? A U 1 D
*
* *

?1

?M
*

n ,k

, then

U 1 AV 1 ? U 1 AA U 1 D
* ?1 * *

?1

? D D
2

?1

? D

V 1 V 1 ? D U 1 AA U 1 D

?1

? I

17

Let V ? [V1 , V 2 ] ? M
*

n

be unitary . then
* 2

0 ? V 1 V 2 ? D U 1 AV

?1

? U 1 AV
*

2

?0
* U 1 AV 2 ? ? D ? ? ? * U 2 AV 2 ? ? 0

?U 1* ? ?U 1* AV 1 * ? U AV ? ? ? A [V 1 , V 2 ] ? ? * * ?U 2 ? ?U 2 AV 1 ? ?

0? ? 0?

?D ? A ?U? ?0

0? ?V 0?

*

(SVD representation)
?D A ?U? ?0 0? ?V 0?
*

?D ? [u1 , ? , u m ]? ?0

? v 1* ? 0?? ? ?? ? ? ? 0? * ?v ? ? n?

??
i ?1

k

i

uiv ?
* i

?S
i ?1

k

i

18

Example 5.4.1. The singular value decomposition can be used for image compression. Consider all the singular values of A and order them greatest to least. Zero the matrix S for singular values less than some threshold.

19

Using 48 of 164 singular values

Using 16 of 164 singular values
20

CONCLUSION
Basic concepts:
? Hermitian matrix, skew-Hermitian matrix, positive define matrix, singular matrix. Important principles:

?
? ? ? ?

*eigenvalues of Hermiatian matrix are real.
*eigenvalues of PD matrix are positive. *diagonalizability of Hermitian matrix. * spectral representation for Hermitian matrix. * SVD.
21

HOMEWORK (2,3)
1. Section 4.1: (12)
?1 ? ?1 1? ? 1?

2. Proof

is PSD, not PD.

3. Proof the SVD theorem (in detail), and try to write down some applications of the SVD.
?5 ? ?3 3? ? 2?
1/ 2

4. Determine

.

22

Lecture 5 Hermitian Matrices_图文.ppt
Lecture 5 Hermitian Matrices - MATRIX AN
Lecture 7 Hermitian Matrices_图文.ppt
Lecture 7 Hermitian Matrices_英语学习_外语学习_教育专区。交流学习 ...Aj . 5.2 Skew-Hermitian Matrices and Properties of Quadratic Form ...
Lecture 6 Normal Matrices_图文.ppt
Autumn 2011 INSTRUCTOR: You-Hua Fan Lecture 6: Normal Matrices Reading assignment...Lecture 5 Hermitian Ma... 22页 1下载券 Lecture 4 Unitary Matr... ...
Lecture 5 Hermitian Matrices_图文.ppt
Lecture 5 Hermitian Matrices - MATRIX AN
lecture1404计算物理_图文.ppt
lecture1404计算物理_计算机硬件及网络_IT/计算机_专业资料。5 Linear equations ...? ?10? Finally, an important property of hermitian and symmetric matrices ...

(As discussed in the lecture, hermitian matrices are normal .) Suppose ( ...computed by Algorithm 23.1 on a computer satisfying ( 13.5) and (13.7...
Hermitian Matrices.pdf
Hermitian Matrices_专业资料。Let A be Hermitian and let the orthonormal ...Lecture 5 Hermitian Ma... 22页 1下载券 Lecture 7 Hermitian Ma... ...
Multiple eigenvalues.pdf
This work was stimulated by a lecture of Beresford Parlett, based upon [...Normal 3. Hermitian 4. Unitary 5. Real Symmetric 6. Matrices in Rnm ...
Lecture-7_图文.pdf
Lecture 7 : General Inverse, Least Square, ...The matrices U , D, and V are all non - ...Hence, A is a skew - Hermitian. Hence 37 P ...
Graphs and Hermitian matrices exact interlacing.pdf
Graphs and Hermitian matrices exact interlacing_专业资料。We prove conditions ...Lecture 5 Hermitian Ma... 22页 1下载券 Matrices and their Kir... ...
MIMO Communications lecture1_图文.pdf
(389.094) Lecture 1 October 11, 2007 5/28 ...Hermitian with eigendecomposition HH H = U Σ2 ...(I n + BA) for matrices A (m × n) and ...
MATLAB Lecture 2 - Solving Linear Systems of Equations.doc
MATLAB Lecture 2 School of Mathematical Sciences ...MATLAB→Mathematics→Matrices and Linear Algebra →...Hermitian B*A is Hermitian The computation is ...
...on EigenvaluesofPerturbed Hermitian Matrices Let....pdf
A Note on EigenvaluesofPerturbed Hermitian Matrices Let Hermitian matrix A =...Lecture 5 Hermitian Ma... 22页 1下载券 ABSTRACT Let Hermitian... 6...
Geometric Complexity Theory V On deciding nonvanish....pdf
(Usual linear programming algorithms [4, 5] here...99-112., CRM Proceedings and Lecture Notes 34,...Tao, Honeycombs and sums of Hermitian matrices, ...
2006年长沙理工大学SCI收录论文目录_图文.doc
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12...Hermitian matrices II Two periodic solutions of ...LECTURE NOTES IN COMPUTER SCIENCE LECTURE NOTES IN...
...joint diagonalization of hermitian matrices.pdf
5. CONCLUSION For the non-orthogonal joint diagonalization of hermitian matrices, we have proposed a new Jacobi like algorithm based on a LU decomposition ...