当前位置:首页 >> 教育学 >>

1《经济管理数学分析》教学大纲(2012)


西南财经大学《经济管理数学分析》教学大纲

四川省省级精品课程

《经济管理数学分析》 教学大纲
一、前言
以经典微积分为主体内容的《经济管理数学分析》,是目前经济类专业中对数学要求 较高的专业(如,金融工程、经济学(基地班),统计学、管理科学等)的重要专业基础 课程,并逐步成为这些专业课程体系中的主干。本课程选用华东师范大学数学系编,高等 教育出版社出版的《数学分析》(第三版,上、下册)作为基本教材,并以此为蓝本安排 教学章节内容,该教材是教育部普通高等教育重点教材,其第一版曾荣获全国第一届高等 学校优秀教材优秀奖。

二、教学内容
本课程总学时约为 192(含习题课),分两个学期授课。 本课程主要教学内容分为五个部分:(1)极限理论(包括实数完备性的一系列等价 命题);(2)一元函数微积分学;(3)多元函数微积分学;(4)无穷级数理论(包括 反常积分理论和含参量积分理论);(5)微积分学方法在经济分析中的应用。其中前三 部分主要讲述微积分的基本概念、 方法和应用, 包括一些相关数学原理的严格证明; (4) 第 部分讲述极限理论在无穷级数、反常积分和含参量积分理论中的深入应用;第(5)部分 讲述经济分析中常见的函数,以及极限、导数,定积分和多元函数微分学方法在经济分析 中的应用。极限和实数完备性理论、定积分理论以及极限理论的各种应用对培养学生的抽 象思维和逻辑推理能力,对大学数学中必要的方法技巧的掌握都是至关重要的。而微积分 学方法在经济分析中的应用可以让经济管理类专业学生初步认识和掌握一些基本的数量 经济分析方法,这对于学生进一步的数量经济方面后续课程的学习具有重大意义。同时在 教学内容上,也特别重视经济数学建模方法的教学与训练,引导学生将数学实验和课外数 学实践活动的有机结合。

三、教学大纲

—1—

西南财经大学《经济管理数学分析》教学大纲

教学大纲

第一章

实数集与函数

实数概述,绝对值与不等式。区间与邻域,确界原理。函数概念,函数的几种表示法, 函数的四则运算,复合函数,反函数,基本初等函数,初等函数。具有某些特性的函数。 经济管理中常见的函数:需求函数,供给函数,成本函数,收益函数,利润函数,生产函 数。 重点和难点 1. 简要介绍实数性质及绝对值与不等式; 2. 重点阐述上、下确界概念及确界原理,这一部分是重点,也有一定的难度,可通 过例题和习题让学生加强理解; 3. 在介绍一般函数概念的同时,强调基本初等函数和初等函数的重要性。强化学生 对一般性与特殊性之间辩证关系的认识。 教学建议 §1 定义 1、2、定理 1.1 的证明、3 定义 2 选讲,补充经济函数。

第二章 数列极限
数列,数列极限的ε-N 定义。收敛数列的性质:唯一性、有界性、保序(号)性、迫 敛性、四则运算法则。数列极限存在的条件。连续复利问题。 重点和难点 1.简单介绍数列极限概念产生的历史过程,从中看到严格的ε-N 定义产生的必然性 和重要性,使学生真正接受高度抽象、形式化的ε-N 定义。其次,通过对ε-N 定义的剖 析和一些典型例题的深入分析,使学生正确理解数列极限的ε-N 定义,并学会运用它来验 证数列极限。 2.在介绍收敛数列的各种性质时,突出强调迫敛性定理是求极限的一种重要方法, 并指出用迫敛性求极限时的一些原则和方法。 要求学生熟练掌握重要极限:lim (1 ?
n? ?

1 n

)

n

? e ,并注意将一些数列极限转化为上述重要极

限形式。

第三章 函数极限
—2—

西南财经大学《经济管理数学分析》教学大纲 函数极限的ε-M 定义和ε-δ定义,单侧极限。函数极限性质:唯一性、局部有界性、 局部保号性、不等式性质、迫敛性、四则运算。函数极限存在的条件:归结原则和柯西准 则。两个重要极限。无穷小量及其阶的比较;无穷大量及其阶的比较。 重点和难点 1.在介绍各种类型的极限定义之前,先直观描述极限,然后通过深入分析极限的含 义,导出极限的严格的形式化的定义。 2.要求学生熟练掌握函数极限的性质和两个重要极限,并熟练用于证明或计算函数 极限。

第四章 函数的连续性
连续性概念,间断点及其分类,在区间上连续的函数。连续函数的性质:局部有界性、 局部保号性、四则运算、复合运算,闭区间上连续函数的性质,反函数的连续性,一致连 续性。初等函数的连续性。 重点和难点 1.连续性概念、连续函数的性质 2.一致连续性的特征,以及它与连续性之间的重要差别。 教学建议 §1 例 3、定理 4.10、定理 4.11 选讲。

第五章

导数与微分

导数概念:导数的定义(导数、左导数、右导数以及与连续性间关系) 。导数几何意 义、物理意义。导函数的概念。求导法则:导数的四则运算。反函数的导数。复合函数的 导数。 基本求导法则与公式。 微分: 微分概念。 微分的运算法则 (一阶微分形式的不变性) 。 高阶导数及运算。高阶微分。参量方程所确定的函数的导数。 重点和难点问题 1. 以曲线的切线、直线运动的瞬时速度为背景,引入导数的概念。 2. 求导法则中着重讲清复合函数的求导法则(链式法则) 。 3. 微分的计算中应注意介绍一阶微分形式的不变性。 教学建议

—3—

西南财经大学《经济管理数学分析》教学大纲 定理 5.9 及其引理可不讲,换用传统的证明方法。微分在近似计算中的运用选讲。

第六章

微分中值定理及其应用
0 0

中值定理: 费马定理——预备定理。 中值定理 (罗尔、 拉格朗日、 柯西三大中值定理) 。 导数极限定理。不定式极限:
? 0 0

型不定式极限。

? ?

型不定式极限。其它类型的不定式极

限( 0 ? ? , ? ? ? , 1 , 0 , ? 等类型)泰勒定理。带佩亚诺型余项的泰勒公式。应用(求极 限) 。函数的单调性。极值的必要条件。极值的两个充分条件(第三个充分条件可作选讲 内容) 。最大值与最小值。函数的凸性与拐点的概念。函数凸性的判定。函数作图。导数 在经济分析中的应用。 重点和难点问题 1. 着重介绍三大微分中值定理及其证明,它们是利用导数的局部性质推断函数的整 体性态的有力工具。 2. 以导数为工具在求不定式极限时,应注意洛必达法则成立的条件,以及其它类型 间的转化方法。 3. 泰勒定理是用多项式近似表示函数并用以进行和近似计算与理论分析的一个重要 工具。注意介绍几种估计及麦克劳林公式。 4. 利用泰勒公式进行近似计算时,注意与前章用(一阶)微分进行近似计算比较。 5. 注意介绍函数单调性(包括单调区间)的判定方法以及利用单调性证明一些不等式 的技巧。 6. 着重介绍函数极值的判定及特定情形下函数最大值,最小值的确定,并介绍它们的 应用。 7. 着重介绍函数凸性的定义及判定方法,并注意介绍它们的应用。 8. 着重介绍经济分析中的几个概念:边际和弹性,掌握常见经济函数的最优化问题。 教学建议 泰勒公式在近似计算中的运用、§5 例 3?例 5 选讲,§6 简介。补充导数在经济管理 中的运用(参考微积分教材) 。

第七章

实数的一些基本定理

确界与确界存在定理。区间套定理。柯西收敛准则。致密性定理。聚点定理。有限复 盖定理。 关于闭区间上连续函数性质的几个定理的严格证明。
—4—

西南财经大学《经济管理数学分析》教学大纲 重点和难点: 1.本章定理均在单调有界定理的前提下讨论。 2.建议以区间套定理为主要工具证明其他定理。 3.在用关于实数完备性的几个定理证明关于闭区间上连续函数性质的几个定理的教 学过程中,应注意培养学生严密推理的能力。

第八章

不定积分

原函数与不定积分概念。基本积分表。线性运算法则。换元积分法。分部积分法。有 理函数积分法。三角函数有理式的积分.几种无理函数的积分。 重点和难点 1.要让学生明了原函数与不定积分的关系(注意与下一章“原函数存在定理”相呼 应) ,求原函数(与不定积分)运算和求导数(与微分)运算之间的关系,从而理解基本 积分公式的本质。 2.着力引导学生掌握和熟练运用不定积分的基本公式,线性运算法则和换元积分法、 分部积分法。注意基本积分运算的原则与技巧,这是本章的重点。 3.在讲授有理函数,三角函数有理数以及几种无理函数的积分法时,要让学生理解 基本积分技术的一般应用思路和求这几类函数积分的具体技巧。 教学建议 §3 中有理函数的积分、无理根式的第 2 种类型选讲

第九章

定积分

从曲边梯形面积与收益问题引出定积分概念。定积分定义。定积分的几何意义。了解 可积的充要条件和(达布)上和、下和及其性质。定积分的性质:线性运算性质,对区间 的可加性、单调性、绝对可积性、积分(第一)中值定理。积分第二中值定理。微积分学 基本定理(原函数存在定理) 。牛顿—莱布尼兹公式。定积分的换元法。定积分的分部积 分法。 重点和难点 1.深刻理解并会应用定积分的定义和性质,变上限的定积分及其导数,牛顿—莱布 尼兹公式,定积分的换元法与分部积分法等重点内容。 2. 关于函数可积性的讨论,要求学生了解其思想与方法。 教学建议
—5—

西南财经大学《经济管理数学分析》教学大纲 §2-§4 的定理证明和§3 例 3 选讲。

第十章

定积分的应用

平面图形的面积,已知截面面积函数的立体体积,旋转体的体积,曲线的弧长,平均 值。补充定积分在经济分析中的应用。 重点和难点 用定积分的基本思想和微元分析法贯穿各种应用问题,通过各种应用加深对积分思想 方法的理解。掌握用微元分析法解题的程序。 教学建议 将§4 的微元法提至本章开始讲解,§2 需补充空间解析几何。

第十一章

反常积分

无穷限积分的绝对收敛与条件收敛。无穷积分与无穷级数的联系。比较判别法及其极 限形式。 柯西判别法及其极限形式。 积分第二中值定理。 阿贝尔判别法与狄利克雷判别法。 无界函数反常积分的柯西准则。无界函数反常积分的绝对收敛与条件收敛。无界函数反常 积分的比较判别法。柯西判别法及其极限形式。阿贝尔判别法与狄利克雷判别法。无界函 数反常积分与无穷限反常积分的联系。 重点和难点 1.注意两型反常积分和无穷级数的联系,定积分概念与性质以及函数极限概念与性 质的联系;两型反常积分相互间的联系。 2.以无穷限反常积分为基础,平行地建立无界函数反常积分的有关内容。 3.本章只讨论两型反常积分的敛散性问题。至于两型反常积分的定义与简单性质及 计算,可安排到定积分的最后一节。

第十二章

数项级数

无穷级数概念——无穷级数与其部分和数列的关系。级数的收敛与发散。级数的简单 性质。级数收敛的必要条件。级数收敛的柯西准则。正项级数收敛的基本定理 ( ? u n ( u n ? 0 ) 收敛的充要条件是:它的部分和数列 ?S n ? 有上界) 。比较判别法及其极限 形式。达朗贝尔比值判别法及其极限形式。柯西根值判别法及其极限形式。柯西积分判别 法。了解拉贝判别法。交错级数,莱布尼兹判别法。阿贝尔判别法。狄利克雷判别法。绝 对收敛与条件收敛。绝对收敛级数的重排定理。绝对收敛级数的乘积(柯西定理) 。条件
—6—
n

西南财经大学《经济管理数学分析》教学大纲 收敛级数的黎曼定理。 重点和难点 1. 阐明级数与(其部分和)数列的联系与转化。 2. 讲清一般项级数与正项级数之间的联系, 重视正项级数在讨论数项级数时的基本 作用。 3. 讲清一般项级数的绝对收敛与条件收敛的区别与联系, 注意这两种收敛性的不同 性质与作用。 对级数收敛的判别定理主要讲明如何应用及应用中需要注意的问题。Abel 变换(即分 部求和公式)值得重视。

第十三章

函数列与函数项级数

函数列的收敛与一致收敛。函数列在区间上一致收敛的充要条件。函数项级数的收敛 与一致收敛。函数项级数在区间上一致收敛的充分必要条件。函数项级数在区间上一致收 敛的充分条件:魏尔斯特拉斯优级数判别法。阿贝尔判别法。狄利克雷判别法。一致收敛 函数列的极限函数的连续性定理、逐项积分定理。逐项求导定理。一致收敛函数项级数的 和函数的连续性,逐项积分、逐项求导定理。 重点和难点 1.以函数列在区间上的(点态)收敛与一致收敛为基础,建立函数项级数在区间上 的(点态)收敛与一致收敛的概念及性质。 2.深入讲解一致收敛性概念,讲清它和点态收敛之间的区别,选讲典型例题说明“非 一致收敛” 。 3.紧密联系数项级数的有关内容,讲述函数项级数的一致收敛性的判别定理,阐明 如何应用这些判别定理以及应用时应当注意的问题。定理的证明过程可讲得简略一些。 4. (与讨论魏尔斯特拉斯优级数判别法相配合) 。通过举例讲清(或布臵作业让学生 注意) ? u n ( x ) 在区间上一致收敛、绝对收敛及 ? u n ( x ) 一致收敛之间的区别与联系。 5.在讲述一致收敛的函数列或函数项级数的连续性、逐项积分、逐项求导定理的同 时,强调一致收敛性条件的重要性,但又要指出它只是充分条件。 教学建议 定理 13.2 的证明和§1 例 3 选讲,§2 的定理证明和例题选讲。
n n

—7—

西南财经大学《经济管理数学分析》教学大纲

第十四章

幂级数

阿贝尔第一定理。收敛半径(收敛区间)与收敛域。幂级数的一致收敛性。幂级数的 性质:连续性、逐项积分、逐项微分、四则运算。泰勒级数与麦克劳林级数。函数展开成 幂级数的条件。初等函数的幂级数展开。 重点和难点 1.通过讨论收敛半径与收敛区间(域)弄清它们在研究幂级数(作为一类特殊的“性 质好”的函数项级数)的一致收敛性方面的作用,注意与“函数项级数”部分的相应内容 之间的联系。 2.在讨论幂级数的性质时,要通过典型例题说明级数求和的一些简单的基本的方法。 3.在讲授泰勒级数时,要阐明它与前面的泰勒公式的区别与联系。 4.对于函数的泰勒展开,要阐明它“直接展开”的根据、思想与方法步骤。更要让 学生掌握“间接展开”的思想与方法。 5.举例说明近似计算的思想与方法(包括数π、e 的近似计算与π、e 是无理数的证 明等) 。

第十五章

多元函数的极限与连续

平面点集概念(邻域、内点、界点、开集、闭集、闭域等) 。了解平面点集的基本定 理——区域套定理、聚点定理、有限覆盖定理。二元函数概念。二重极限。累次极限。二 元函数的连续性、复合函数的连续性定理、有界闭域上连续函数的性质。 重点和难点问题 1.要求学生理解平面点集概念。平面点集的基本定理和有界域上连续函数的性质可 类比于一维直线中的相应定理介绍,不作证明。 2.二元函数、二重极限、二元函数的连续性等内容是本章重点,要强调它们和一元 函数中的相应概念之间区别(与联系) 。 教学建议 本章定理证明选讲。

第十六章

多元函数微分学

偏导数概念及其几何意义、全微分概念、全微分的几何意义及应用。复合函数的求导 法则及全微分计算,一阶微分形式的不变性。方向导数与梯度。高阶偏导数、高阶微分。
—8—

西南财经大学《经济管理数学分析》教学大纲 二元函数的微分中值定理与泰勒公式。二元函数的极值。 重点和难点 1. 应重点加强偏导数的计算训练,特别是复合函数的偏导计算。 2. 全微分概念要对照一元函数微分概念讲解。要弄清可微性条件,可微与连续、可 微与偏导存在,可微与偏导连续之间的区别与联系。 3. 二元函数极值也应对照一元函数极值讲解,强调多元函数极值问题远比一元函数 极值问题复杂。 教学建议 §4 例 10 选讲。§4 补充经济应用。

第十八章

隐函数定理及其应用

隐函数概念。隐函数定理。隐函数求导。 条件极值。拉格朗日乘数法。 重点和难点: 1. 要求学生深入理解隐函数的概念,并通过隐函数的在几何、坐标变换及条件极值 等方面的应用加深理解隐函数的概念与作用。 2. 要求学生掌握隐函数的求导方法,并注意在关于隐函数的讨论与计算时考虑是否 满足隐函数定理的条件。 教学建议 §2,§3 选讲。§4 补充经济应用。

第十九章

含参量积分

含参量常义积分概念。含参量常义积分的连续性、可积性、可微性、积分次序的变换。 含参量广义积分的概念;含参量广义积分的收敛与一致收敛。含参量广义积分的一致 收敛判别法:Cauchy 准则。Weierstrass 判别法.Abel 判别法。Dirichlet 判别法。 含参量广义积分的性质:连续性定理、可微性定理、可积性定理、积分次序交换定理。 *Euler 积分(Γ-函数、B-函数) 。 重点和难点: 1.着重讲解含参量广义积分的收敛与一致收敛概念,利用典型例题说明“非一致收 敛” 。 2.强调含参量广义积分与函数项级数在论证方法上的相似性,对照函数项级数的有 关概念、讨论含参量广义积分的相应概念与性质。
—9—

西南财经大学《经济管理数学分析》教学大纲 1.讲述一致收敛性判别定理时,应突出这些定理的应用及应用时应注意的问题。 2.在讲述含参量广义积分的性质各定理的同时,强调一致收敛性条件在定理中的重 要性,但又应强调只是充分条件。

第二十一章

重积分

二重积分概念:矩形区域上的二重积分。二重积分的性质。二重积分的可积条件。一 般区域上的二重积分。二重积分的计算:化二重积分为累次积分。二重积分换元法(极坐 标变换与一般变换) 。重积分的应用:平面图形的面积,空间立体的体积等。 重点和难点 1.在重积分概念中,着重讲解二重积分概念,强调定义中分割、求和、取极限三步 骤,以及分割的分法与介点取法的两个“任意性” 。 2.深入讲解二重积分的可积性问题,讲清可积的必要条件、充分条件及充要条件。 3.重积分的性质可与定积分性质对比,作一般介绍。 4.强调和强化重积分计算。 5.用微元法讲重积分应用,让学生掌握微元法思想,并处理实际应用问题(主要是几 何、物理应用) n 重积分只作简要介绍。 。 教学建议 §1“平面图形的面积”选讲,§4 的定理证明选讲。§6 重积分的应用主要讲曲顶柱 体的体积应用。

习题
以每节划线前的习题为主,以每节划线后的习题和总练习题为辅。

四、参考书目
《数学分析学习指导书》(华东师大吴良森等编,高等教育出版社) 《数学分析讲义(上/下册)》(刘玉琏等编 高等教育出版社) 《工科数学分析基础(上/下册)》(王绵森等编 高等教育出版社) 《高等数学习题集》 (同济大学应用数学系 高等教育出版社)

五、课时分配表

—10—

西南财经大学《经济管理数学分析》教学大纲

2012 级课时分配表
第一学期(90 学时) 第一章 实数集与函数 §1-§2 实数、数集与确界原理 §3-§4 函数与函数的性质 第二章 §1 §2 §3 第三章 §1 §2 §3 §4 §5 数列极限 数列极限的定义 数列极限的性质 收敛条件 函数极限 函数极限的定义 函数极限的性质 函数极限存在的条件 两个重要的极限 无穷小及其比较 习题课(2-3 章) 函数的连续性 连续性概念 连续函数的性质 初等函数的连续性 习题课 4时 2 时 2 时 12 时 4 时 4 时 4 时 16 时 4 时 2时 2 时 2 时 4 时 2 时 8时 2 3 1 2 时 时 时 时

第四章 §1 §2 §3

第五章 §1 §2 §3 §4 §5

导数与微分 导数概念 求导法则 含参量函数的导数 高阶导数 微分 习题课 中值定理及不定式极限

14 时 3 时 3 时 2 时 2时 2 时 2 时 18 时
—11—

第六章

西南财经大学《经济管理数学分析》教学大纲 §1 §2 §3 §4 §5 §6 拉格朗日定理和函数的单调性 柯西中值定理和不定式极限 泰勒公式 函数的极值与最大(小)值 补充:导数在经济分析中的应用 函数的凸性与拐点 函数图像的讨论 习题课 4 3 3 2 2 1 1 2 时 时 时 时 时 时 时 时 2时 2时 10 时 2时 5时 1时 2时 10 时 2 时 2 时 2 时 2 时 2时

第七章 实数的完备性 §1 关于实数集完备性的基本定理 第八章 不定积分 §1 概念与基本公式 §2 换元积分法与分部积分法 §3 有理函数的积分 习题课 第九章 定积分 §1+§3 定积分的定义+可积条件 §4 定积分的性质 §2 牛顿-莱布尼兹公式 §5 定积分计算 习题课 第二学期(90 学时)

第十章 定积分的应用 §1 平面图形的面积 2 时 §2 由平行截面面积求体积 2 时 §3(补充) 定积分在经济分析中的应用 2 时 习题课 第十一章 反常积分 §1 反常积分的概念 §2 无穷积分的性质与收敛判别 §3 瑕积分的性质与收敛判别 习题课
—12—

8 时

2 时 8 时 2 3 1 2 时 时 时 时

西南财经大学《经济管理数学分析》教学大纲 第十二章 数项级数 §1 级数的收敛性 §2 正项级数 §3 一般项级数 习题课 第十三章 函数列与函数项级数 §1 一致收敛性 §2 一致收敛函数列和 函数项级数的性质 第十四章 幂级数 §1 幂级数 §2 函数的幂级数展开 习题课 第十六章 多元函数的极限与连续 §1 平面点集与多元函数 §2-§3 二元函数的极限与连续性 第十七章 多元函数微分学 §1 可微性 §2 复合函数微分法 §3 方向导数和梯度 §4 Taylor 公式和极值问题 习题课 12 时 3 4 3 2 时 时 时 时 4 时 2 时 2 时 8 时 3 时 3 时 2 时 4 时 2 时 2 时 16 时 4 4 2 4 时 时 时 时

2 时

第十八章 隐函数定理及其应用 §1 隐函数 §2 隐函数组 §3 几何应用 §4 条件极值 习题课 第十九章 §1 含参量积分 含参量正常积分
—13—

8时 2 1 1 2 2 时 时 时 时 时 8时 3 时

西南财经大学《经济管理数学分析》教学大纲 §2 含参量反常积分 §3 欧拉积分 习题课 第二十一章 重积分 §1 二重积分概念 §2 直角坐标系下二重积分的计算 §4 二重积分的变量变换 §5 三重积分 §6 重积分的应用 习题课 2 时 1 时 2 时 14 时 2 时 4 时 2 时 2时 2 时 2 时

—14—


相关文章:
1《经济管理数学分析》教学大纲(2012).doc
1《经济管理数学分析》教学大纲(2012) - 西南财经大学《经济管理数学分析》
经济数学教学大纲.doc
经济数学教学大纲 - 《经济管理数学分析》 教学大纲 、前言 以经典微积分为主
《数学分析1》教学大纲..pdf
《数学分析1》教学大纲. - 《数学分析》 (上)课程教学大纲 学学分:4 学分
《数学分析》教学大纲.doc
数学分析》教学大纲 - 复旦大学数学类基础课程 数学分析》 《数学分析》教学大纲 218.003.1 数学分析( I ) 学分数 5 周学时 4+2 总学时 96 (讲课 64,...
《数学分析》教学大纲.doc
数学分析》教学大纲 - 数学专业 《数学分析》教学大纲 学时:289 学时 理
《数学分析1》教学大纲.pdf
《数学分析1》教学大纲 - 《数学分析》 (上)课程教学大纲 学学分:4 学分
《数学分析》 教学大纲(2013版).doc
数学分析》 教学大纲(2013版) - 数学分析》教学大纲 课程英文名称:
《数学分析Ⅱ》课程教学大纲.doc
《数学分析Ⅱ》课程教学大纲 - 数学分析Ⅱ》课程教学大纲 《数学分析》课程说明 (一)课程代码:08120002 (二)课程英文名称:Mathematical Analysis (三)开...
《数学分析选讲》课程教学大纲().doc
数学分析选讲》课程教学大纲() - 《数学分析选讲》课程教学大纲 课程编码:
数学分析 教学大纲.txt
数学分析 教学大纲_理学_高等教育_教育专区。金融学院经济数学答案《数学分析》教学大纲 、 课程性质 本课程是高等院校数学与应用数学专业和信息与计算科学专业的...
数学分析课件_图文.ppt
《经济管理数学分析》 课题组版权所有 请勿外传 祝贺...现代经济学研究必须掌握两大法宝:是良好的数学功底...关于教学大纲和教学内容 关于教学大纲和教学内容 教学...
数学分析课程教学大纲.doc
数学分析课程教学大纲 - 《数学分析》课程教学大纲 (理工科师范类数学教育专业) 说明 数学分析是理工科师范类数学教育专业的门必修的基础课。 这门课程对于学员...
《数学分析(上)》教学大纲.pdf
《数学分析(上)》教学大纲 - 数学分析(上) 》教学大纲 课程编号: 08100860 课程名称: 数学分析(上) 英文名称: Mathematical Analysis 《数学分析》 陈传...
数学分析12教学大纲.doc
数学分析12教学大纲 - 《数学分析 12》课程教学大纲 1.课程基本情况 课程名称:数学分析 12 课程说明 英文名称:Mathematical Analysis 课程编号:2411...
《数学分析选讲》教学大纲.doc
数学分析选讲》教学大纲 - 适用于数学与应用数学专业,是报考数学方向研究生的的
《数值分析》教学大纲.doc
高等数学,线性代数, Matlab 语言 、课程目的与要求“数值分析” 课是理工科...张明 编著, 《应用数值分析》 (第四版) ,石油工业出版社,2012 年 8 月。...
《数值分析》教学大纲.doc
(本科) 教学大纲说明、 本课程的地位、作用和任务《数值分析》门应用性很强的基础课,它以数学问题为对象,研究适用于科 学计算与工程计算的数值计算方法及...
数学分析教学大纲.doc
数学分析选讲》课程教学大纲一《数学分析选讲》课程说明(一)课程代码: 08
《数学分析(下)》教学大纲.pdf
《数学分析(下)》教学大纲 - 数学分析(下) 》教学大纲 课程编号: 08101050 课程名称: 数学分析(下) 英文名称: Mathematical Analysis 《数学分析》 陈传...
《经济学原理》课程教学大纲.doc
《经济学原理》课程教学大纲适用专业:经济管理类 编写日期:2004 年 7 月 领导签字: 学时数:45 修订日期:2008 年 2 月 执笔者:胡若痴 审阅者:李胜 、...
更多相关标签: