当前位置:首页 >> 高考 >>

高中数学大纲


高 中 数 学 大 纲

高中数学学习方法
一、课内重视听讲,课后及时复习。

北京梦飞翔教育集团

1

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求 正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解 题思路与教师所讲有哪些不同。 特别要抓住基础知识和基本技能的学习, 课后要及时复习不 留疑点。 首先要在做各种习题之前将老师所讲的知识点回忆一遍, 正确掌握各类公式的推理 过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意 义上讲, 应不造成不懂即问的学习作风, 对于有些题目由于自己的思路不清, 一时难以解出, 应让自己冷静下来认真分析题目, 尽量自己解决。 在每个阶段的学习中要进行整理和归纳总 结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。
要想学好数学, 多做题目是难免的, 熟悉掌握各种题型的解题思路。 刚开始要从基础题入手, 以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自 己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的 解题思路和正确的解题过程两者一起比较找出自己的错误所在, 以便及时更正。 在平时要养 成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态, 在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如 果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯 是非常重要的。

三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝 大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽 量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思 路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不 能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下 提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿 分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点, 使自己进入数学的广阔天地中去。

高一数学第一册上
第一章 集合与简易逻辑 一 集合 1.1 集合 1.2 子集、全集、补集
北京梦飞翔教育集团 2

1.3 交集、并集 1.4 含绝对值的不等式解法 1.5 一元一次不等式解法 阅读材料 集合中元素的个数 二 简易逻辑 1.6 逻辑联结词 1.7 四种命题 1.8 充分条件与必要条件 小结与复习 复习参考题一

第二章

函数

一 函数 2.1 函数 2.2 函数的表示法 2.3 函数的单调性 2.4 反函数 二 指数与指数函数 2.5 指数 2.6 指数函数 三 对数与对数函数 2.7 对数 阅读材料 对数的发明 2.8 对数函数 2.9 函数的应用举例 阅读材料 自由落体运动的数学模型 实习作业 建立实际问题的函数模型 小结与复习 复习参考题二

第三章

数列

3.1 数列 3.2 等差数列 3.3 等差数列的前 n 项和 阅读材料 有关储蓄的计算 3.4 等比数列 3.5 等比数列的前 n 项和 研究性学习课题:数列在分期付款中的应用 小结与复习

北京梦飞翔教育集团

3

高一数学第一册下
第四章 三角函数 一 任意角的三角函数 4.1 角的概念的推广 4.2 弧度制 4.3 任意角的三角函数 阅读材料 三角函数与欧拉 4.4 同角三角函数的基本关系式 4.5 正弦、余弦的诱导公式 二 两角和与差的三角函数 4.6 两角和与差的正弦、余弦、正切 4.7 二倍角的正弦、余弦、正切 三 三角函数的图象和性质 4.8 正弦函数、余弦函数的图象和性质 4.9 函数 y=Asin(ω x+φ )的图象 4.10 正切函数的图象和性质 4.11 已知三角函数值求角 阅读材料 潮汐与港口水深 小结与复习 复习参考题四

第五章

平面向量

一 向量及其运算 5.1 向量 5.2 向量的加法与减法 5.3 实数与向量的积 5.4 平面向量的坐标运算 5.5 线段的定比分点 5.6 平面向量的数量积及运算律 5.7 平面向量数量积的坐标表示 5.8 平移 阅读材料 向量的三种类型 二 解斜三角形 5.9 正弦定理、余弦定理 5.10 解斜三角形应用举例 实习作业 解三角形在测量中的应用 阅读材料 人们早期怎样测量地球的半径?
北京梦飞翔教育集团 4

研究性学习课题:向量在物理中的应用 小结与复习
复习参考题五

高二数学第二册上
第六章 不等式 6.1 不等式的性质 6.2 算术平均数与几何平均数 6.3 不等式的证明 6.4 不等式的解法举例 6.5 含有绝对值的不等式 阅读材料 n 个正数的算术平均数与几何平均数 小结与复习 复习参考题六

第七章 直线和圆的方程 7.1 直线的倾斜角和斜率 7.2 直线的方程 7.3 两条直线的位置关系 阅读材料 向量与直线 7.4 简单的线性规划 研究性学习课题与实习作业:线性规划的实际应用 7.5 曲线和方程 阅读材料 笛卡儿和费马 7.6 圆的方程 小结与复习 复习参考题七

第八章 圆锥曲线方程 8.1 椭圆及其标准方程 8.2 椭圆的简单几何性质 8.3 双曲线及其标准方程 8.4 双曲线的简单几何性质 8.5 抛物线及其标准方程 8.6 抛物线的简单几何性质 阅读材料 圆锥曲线的光学性质及其应用 小结与复习
复习参考题八 北京梦飞翔教育集团 5

高二数学第二册下A
第九章 直线、平面、简单几何体 9.1 平面 9.2 空间直线 9.3 直线与平面平行的判定和性质 9.4 直线与平面垂直的判定和性质 9.5 两个平面平行的判定和性质 9.6 两个平面垂直的判定和性质 9.7 棱柱 9.8 棱锥 阅读材料 柱体和锥体的体积 研究性学习课题:多面体欧拉定理的发现 阅读材料 欧拉公式和正多面体的种类 9.9 球 小结与复习 复习参考题九

第十章 排列、组合和二项式定理 10.1 分类计数原理与分步计数原理 10.2 排列 10.3 组合 阅读材料 从集合的角度看排列与组合 10.4 二项式定理 小结与复习 复习参考题十

第十一章 概率 11.1 随机事件的概率 11.2 互斥事件有一个发生的概率 11.3 相互独立事件同时发生的概率 阅读材料 抽签有先有后,对个人公平吗?

高二数学第二册下B
第九章 直线、平面、简单几何体 9.1 平面的基本性质
北京梦飞翔教育集团 6

9.2 空间的平行直线与异面直线 9.3 直线和平面平行与平面和平面平行 9.4 直线和平面垂直 9.5 空间向量及其运算 9.6 空间向量的坐标运算 9.7 直线和平面所成的角与二面角 9.8 距离 阅读材料 向量概念的推广与应用 9.9 棱柱与棱锥 研究性学习课题:多面体欧拉定理的发现 阅读材料 欧拉公式和正多面体的种类 9.10 球 小结与复习 复习参考题九

第十章 排列、组合和二项式定理 10.1 分类计数原理与分布计数原理 10.2 排列 10.3 组合 阅读材料 从集合的角度看排列与组合 10.4 二项式定理 小结与复习 复习参考题十

第十一章 概率 11.1 随机事件的概率 11.2 互斥事件有一个发生的概率 11.3 相互独立事件同时发生的概率 阅读材料 抽签有先有后,对各人公平吗? 小结与复习
复习参考题十一

高三数学第三册(理科)
第一章 概率与统计

北京梦飞翔教育集团

7

1.1 离散型随机变量的分布列 1.2 离散型随机变量的期望与方差 1.3 抽样方法 1.4 总体分布的估计 阅读材料 累积频率分布 1.5 正态分布 1.6 线性回归 阅读材料 回归直线方程的推导 实习作业 通过抽样调查,研究实际问题 小结与复习 复习参考题一

第二章 极限 2.1 数学归纳法及其应用举例 阅读材料 不完全归纳法与完全归纳法 研究性学习课题:杨辉三角 2.2 数列的极限 2.3 函数的极限 2.4 极限的四则运算 阅读材料 无穷等比数列的和 2.5 函数的连续性 小结与复习 复习参考题二

第三章

导数

3.1 导数的概念 3.2 几中常见函数的导数 阅读材料 变化率举例 3.3 函数的和、差、积、商的导数 3.4 复合函数的导数 3.5 对数函数与指数函数的导数 阅读材料 近似计算 3.6 函数的单调性 3.7 函数的极值 3.8 函数的最大值与最小值 3.9 微积分建立的时代背景和历史意义 小结与复习
复习参考题三

第四章 4.1 复数的概念 4.2 复数的运算

数系的扩充──复数

北京梦飞翔教育集团

8

4.3 数系的扩充 研究性学习课题:复数与平面向量、三角函数的联系 小结与复习
复习参考题四

高三数学第三册(文科)
第一章 统计 1.1 抽样方法 1.2 总体分布的估计 1.3 总体期望值和方差的估计 实习作业 通过抽样调查研究实际问题 小结与复习 复习参考题一 附录 随机数表

第二章

导数

2.1 导数的背景 2.2 导数的概念 2.3 多项式函数的导数 2.4 函数的单调性与极值 2.5 函数的最大值与最小值 2.6 微积分建立的时代背景和历史意义 研究性学习课题:杨辉三角 小结与复习
复习参考题二

高中数学基本公式
基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N);
北京梦飞翔教育集团 9

3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 三角函数的和差化积公式 sinα+sinβ=2sin(α+β)/2· cos(α-β)/2 sinα-sinβ=2cos(α+β)/2· sin(α-β)/2 cosα+cosβ=2cos(α+β)/2· cos(α-β)/2 cosα-cosβ=-2sin(α+β)/2· sin(α-β)/2 三角函数的积化和差公式 sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)] cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)] cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)] sinα ·sinβ =-1/2 [cos(α +β )-cos(α -β )] 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ? 某些数列前 n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b^2=a^2+c^2-2accosB 注:角 B 是边 a 和边 c 的夹角 圆的标准方程 (x-a)^2+(y-b)^2=^r2 注: (a,b)是圆心坐标 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

中数学重点知识与结论分类解析
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.

北京梦飞翔教育集团

10

2.对集合 A、B , A ? B ? ? 时,必须注意到“极端”情况: A ? ? 或 B ? ? ;求集合的子 集时是否注意到 ? 是任何集合的子集、 ? 是任何非空集合的真子集. 3.对于含有 n 个元素的有限集合 M ,其子集、真子集、非空子集、非空真子集的个数依次

2 , , 为 2 , ? 1 2 ? 2. 2 ? 1
n n n n

4 . “ 交 的 补 等 于 补 的 并 , 即 CU ( A ? B) ? CU A ? CU B ” ; “ 并 的 补 等 于 补 的 交 , 即

CU ( A ? B) ? CU A ? CU B ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不?或?即?且?,不?且?即?或?”.

6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真 全真”;“非命题”的真假特点是“一真一假”. 7.四种命题中“?逆?者?交换?也”、“?否?者?否定?也”. 原命题等价于逆否命题, 但原命题与逆命题、 否命题都不等价. 反证法分为三步: 假设、 推矛、得果. 注意:命题的否定是“命题的非命题,也就是?条件不变,仅否定结论?所得命题”,但否 命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?. 8.充要条件

二、函
1.指数式、对数式, a n ?
m n



am , a

?m n

? 1 , a loga N ? N m an

ab ? N ? loga N ? b(a ? 0, a ? 1, N ? 0) ,
a0 ? 1 , loga 1 ? 0 , loga a ? 1 , lg 2 ? lg 5 ? 1 , loge x ? ln x , log a b ? log c b ,
log c a

log am b n ?

n log a b . m

2. (1)映射是“?全部射出?加?一箭一雕?”;映射中第一个集合 A 中的元素必有像,但第二个 集合 B 中的元素不一定有原像( A 中元素的像有且仅有下一个,但 B 中元素的原像可能没 有,也可任意个) ;函数是“非空数集上的映射”,其中“值域是映射中像集 B 的子集”. (2)函数图像与 x 轴垂线至多一个公共点,但与 y 轴垂线的公共点可能没有,也可任 意个. (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

北京梦飞翔教育集团

11

3.单调性和奇偶性 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同. 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. 注意: (1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函 数奇偶性的常用方法有: 定义法、 图像法等等. 对于偶函数而言有:f (? x) ? f ( x) ? f (| x |) . (2)若奇函数定义域中有 0,则必有 f (0) ? 0 .即 0 ? f ( x) 的定义域时, f (0) ? 0 是

f ( x) 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定) 、 导数法;在选择、填空题中还有:数形结合法(图像法) 、特殊值法等等. (4)既奇又偶函数有无穷多个( f ( x) ? 0 ,定义域是关于原点对称的任意一个数集) . (7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”. 复合函数的奇偶性特点是: “内偶则偶, 内奇同外”. 复合函数要考虑定义域的变化。 (即复合有意义) 4.对称性与周期性(以下结论要消化吸收,不可强记) (1)函数 y ? f ?x ? 与函数 y ? f ?? x ?的图像关于直线 x ? 0 ( y 轴)对称. 推广一:如果函数 y ? f ?x ? 对于一切 x ? R ,都有 f ? a ? x? ? f ? b ? x? 成立,那 么 y ? f ?x ? 的图像关于直线 x ?

a?b (a ? x) ? (b ? x) (由“ x 和的一半 x ? 确定”)对称. 2 2
b?a (由 2

推 广 二 : 函 数 y ? f ?a ? x ? , y ? f ?b ? x ? 的 图 像 关 于 直 线 x ?

a? x ? b? x 确定)对称.
(2)函数 y ? f ?x ? 与函数 y ? ? f ?x ? 的图像关于直线 y ? 0 ( x 轴)对称. (3)函数 y ? f ?x ? 与函数 y ? ? f ? ? x ? 的图像关于坐标原点中心对称. 推广:曲线 f ( x, y) ? 0 关于直线 y ? x ? b 的对称曲线是 f ( y ? b, x ? b) ? 0 ; 曲线 f ( x, y) ? 0 关于直线 y ? ? x ? b 的对称曲线是 f (? y ? b, ? x ? b) ? 0 . (5)类比“三角函数图像”得:若 y ? f ( x) 图像有两条对称轴 x ? a, x ? b(a ? b) ,则

y ? f ( x) 必是周期函数,且一周期为 T ? 2 | a ? b | .

北京梦飞翔教育集团

12

如 果 y ? f ( x) 是 R 上 的 周 期 函 数 , 且 一 个 周 期 为 T , 那 么

f ( x ? nT ) ? f ( x)(n ? Z) .
特别: f ( a ) ?? x( a 若 x ? f ( )

0 ? )

恒成立, T ? 2 a . f ( x ? a) ? 则 若

1 (a ? 0) f ( x)

恒成立,则 T ? 2 a .若 f ( x ? a) ? ?

1 (a ? 0) 恒成立,则 T ? 2a . f ( x)

三、数



1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 n 项和公式 的关系: an ?

?S ,(?nS? 1),(n ? 2) S
1 n n ?1

(必要时请分类讨论) .

注意:an ? (an ? an ?1 ) ? (an ?1 ? an ? 2 ) ? ? ? (a2 ? a1 ) ? a1 ;an ? 2.等差数列 {an } 中: (1)等差数列公差的取值与等差数列的单调性.

an an ?1 a ? ? ? ? 2 ? a1 . an ?1 an ? 2 a1

(2) an ? a1 ? (n ? 1)d ? am ? (n ? m)d ; p ? q ? m ? n ? a p ? aq ? am ? an . (3) {an1 ? ( k ?1) m} 、 {kan } 也成等差数列. (4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5) a1 ? a2 ? ? ? am , ak ? ak ?1 ? ? ? ak ? m?1,? 仍成等差数列. (6) S n ?

n(a1 ? an ) n(n ? 1) d d S d , S n ? n 2 ? (a1 ? )n , an ? 2 n ?1 , , S n ? na1 ? 2n ? 1 2 2 2 2

An a ? f (n) ? n ? f (2n ? 1) . Bn bn
(7)ap ? q, aq ? p( p ? q) ? a p ? q ? 0 ;S p ? q, Sq ? p( p ? q) ? S p ? q ? ?( p ? q) ;

Sm? n ? Sm ? Sn ? mnd .
(8)“首正”的递减等差数列中,前 n 项和的最大值是所有非负项之和; “首负”的递增等差数列中,前 n 项和的最小值是所有非正项之和; (9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数

北京梦飞翔教育集团

13

还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的 积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项. (10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项 关系”转化求解. (11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图 像法(也就是说数列是等差数列的充要条件主要有这五种形式) . 3.等比数列 {an } 中: (1)等比数列的符号特征(全正或全负或一正一负) ,等比数列的首项、公比与等比 数列的单调性. (2) an ? a1q n ?1 ? am q n ? m ; p ? q ? m ? n ? bp ? bq ? bm ? bn . (3) {| an |} 、 {an1 ? ( k ?1) m} 、 {kan } 成等比数列; {an }、 n } 成等比数列 ? {anbn } 成等 {b 比数列. (4)两等比数列对应项积(商)组成的新数列仍成等比数列. (5) a1 ? a2 ? ? ? am , ak ? ak ?1 ? ? ? ak ? m?1,? 成等比数列.

(q ? 1) ?na1 (q ? 1) ?na1 ? ? ?? a (6) S n ? ? a1 ? an q a1 (1 ? q n ) . a n (q ? 1) ?? 1 q ? 1 (q ? 1) ? 1? q ? 1? q 1? q ? 1? q ?
特别: a ? b ? (a ? b)(a
n n n?1

? an?2b ? an?3b2 ? ?? abn?2 ? bn?1 ) .

(7) Sm?n ? Sm ? qm Sn ? Sn ? qn Sm . (8) “首大于 1”的正值递减等比数列中, n 项积的最大值是所有大于或等于 1 的项的 前 积;“首小于 1”的正值递增等比数列中,前 n 项积的最小值是所有小于或等于 1 的项的积; (9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数 还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为 奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和. (10)并非任何两数总有等比中项.仅当实数 a , b 同号时,实数 a , b 存在等比中项.对 同号两实数 a , b 的等比中项不仅存在,而且有一对 G ? ? ab .也就是说,两实数要么没有 等比中项(非同号时) ,如果有,必有一对(同号时) .在遇到三数或四数成等差数列时, 常优先考虑选用“中项关系”转化求解.
北京梦飞翔教育集团 14

(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也 就是说数列是等比数列的充要条件主要有这四种形式) . 4.等差数列与等比数列的联系 (1)如果数列 {an } 成等差数列,那么数列 { A n } ( A n 总有意义)必成等比数列. (2)如果数列 {an } 成等比数列,那么数列 {loga | an |}(a ? 0, a ? 1) 必成等差数列. (3)如果数列 {an } 既成等差数列又成等比数列,那么数列 {an } 是非零常数数列;但数 列 {an } 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件. (4) 如果两等差数列有公共项, 那么由他们的公共项顺次组成的新数列也是等差数列, 且新等差数列的公差是原两等差数列公差的最小公倍数. 如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊 到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共 项,并构成新的数列. 注意: (1)公共项仅是公共的项,其项数不一定相同,即研究 an ? bm .但也有少 数问题中研究 an ? bn ,这时既要求项相同,也要求项数相同. (2) (四)个数成等差(比) 三 的中项转化和通项转化法. 5.数列求和的常用方法: (1)公式法:①等差数列求和公式(三种形式) , ②等比数列求和公式(三种形式) ,
2 2 2 2 ③ 1 ? 2 ? 3 ? ? ? n ? 1 n(n ? 1) , 1 ? 2 ? 3 ? ? ? n ? 1 n(n ? 1)(2n ? 1) ,

a

a

2

6

1 ? 3 ? 5 ? ? ? (2n ? 1) ? n2 , 1 ? 3 ? 5 ? ? ? (2n ? 1) ? (n ? 1)2 .
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在 一起,再运用公式法求和. (3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列 的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差 数列前 n 和公式的推导方法) . (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相 乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一
北京梦飞翔教育集团 15

般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!(这也是等比数列前 n ) 和公式的推导方法之一) . (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联, 那么常选用裂项相消法求和.常用裂项形式有: ① ②

1 ?1? 1 , n(n ? 1) n n ? 1 1 ? 1 (1 ? 1 ) , n(n ? k ) k n n ? k

特别声明:?运用等比数列求和公式,务必检查其公比与 1 的关系,必要时分类讨 论. (6)通项转换法。

四、三角函数
1. ? 终边与 ? 终边相同( ? 的终边在 ? 终边所在射线上) ? ? ? ? ? 2k? (k ? Z) .

? 终边与 ? 终边共线( ? 的终边在 ? 终边所在直线上) ? .
? 终边与 ? 终边关于 x 轴对称 ? ? ? ?? ? 2k? (k ? Z) . ? 终边与 ? 终边关于 y 轴对称 ? ? ? ? ? ? ? 2k? (k ? Z) . ? 终边与 ? 终边关于原点对称 ? ? ? ? ? ? ? 2k? (k ? Z) .
一般地: ? 终边与 ? 终边关于角 ? 的终边对称 ? ? ? 2? ? ? ? 2k? (k ? Z) .

? 与 ? 的终边关系由“两等分各象限、一二三四”确定.
2
? 2 2.弧长公式: l ?| ? | R ,扇形面积公式: S ? 1 lR ? 1 | ? | R ,1 弧度(1rad) ? 57.3 .

2

2

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正. 注意: sin15? ? cos 75? ?

6 ? 2 ,sin 75? ? cos15? ? 4

6? 2 , 4 5 ?1 . 4

tan15? ? cot 75? ? 2 ? 3,tan75? ? cot15? ? 2 ? 3 , sin18? ?

4.三角函数线的特征是:正弦线“站在 x 轴上(起点在 x 轴上)”、余弦线“躺在 x 轴上(起 点是原点)”、正切线“站在点 A(1, 0) 处(起点是 A )”.务必重视“三角函数值的大小与单 位圆上相应点的坐标之间的关系,?正弦? ? ?纵坐标?、?余弦? ? ?横坐标?、?正切? ? ?纵坐 标除以横坐标之商?”; 务必记住: 单位圆中角终边的变化与 sin ? ? cos ? 值的大小变化的关

北京梦飞翔教育集团

16

系. ? 为锐角 ? sin ? ? ? ? tan ? . 5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取 值,精确确定角的范围,并进行定号”; 6.三角函数诱导公式的本质是:奇变偶不变,符号看象限. 7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有: 已知角与特殊角的变换、 已知角与目标角的变换、 角与其倍角的变换、 两角与其和差角的变换. 如

? ? (? ? ? ) ? ? ? (? ? ? ) ? ?

, ,

2? ? (? ? ? ) ? (? ? ? )
2 ? ??



2? ? (? ? ? ) ? (? ? ? ) , ? ? ? ? 2 ?
常值变换主要指“1”的变换:

? ??
2

???

?

?
2

? ?? ? ?
? 2 ?

等.

1 ? sin 2 x ? cos2 x ? sec2 x ? tan 2 x ? tan x ? cot x ? tan ? ? sin ? ? cos0 ? ? 等. 4 2
三角式变换主要有: 三角函数名互化 (切割化弦) 三角函数次数的降升 、 (降次、升次) 、 运算结构的转化(和式与积式的互化) .解题时本着“三看”的基本原则来进行:“看角、看函 数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次. 注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)

sin 公式中的符号特征.“正余弦?三兄妹— sin x ? cos x、 x cos x ?的联系”(常和三角换元法联
系在一起 t ? sin x ? cos x ?[? 2, 2],sin x cos x ? 辅助角公式中辅助角的确定: a sin x ? b cos x ? 的象限由 a, b 的符号确定,? 角的值由 tan ? ? ) .

a 2 ? b 2 sin ? x ? ? ? (其中 ? 角所在

b 确定) 在求最值、 化简时起着重要作用. 尤 a

其 是 两 者 系 数 绝 对 值 之 比 为 1或 3 的 情 形 . A sin x ? B cos x ? C 有 实 数 解
2 ? A2 ? B2 ? C .

8.三角函数性质、图像及其变换: (1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性 注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说 来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又 是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 y ? sin 2 x, y ? sin x 的周期

北京梦飞翔教育集团

17

都是 ? , 但 y ? sin x ? cos x y ? sin x ? cos x 的周期为 ? , y=|tanx|的周期不变,问函数 2 y=cos|x|, y ? sin x 2 , y ? sin x , y ? cos x ,y=cos|x|是周期函数吗? (2)三角函数图像及其几何性质: (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换. (4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换 法. 9.三角形中的三角函数: (1)内角和定理:三角形三角和为 ? ,任意两角和与第三个角总互补,任意两半角和 与第三个角的半角总互余. 锐角三角形 ? 三内角都是锐角 ? 三内角的余弦值为正值 ? 任 两角和都是钝角 ? 任意两边的平方和大于第三边的平方. (2)正弦定理:

a ? b ? c ? 2 R (R 为三角形外接圆的半径) . sin A sin B sin C

注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能 有两解.
2 2 2 (b ? c) ? a 2 2 2 ? 1 等, (3)余弦定理: a ? b ? c ? 2bc cos A,cos A ? b ? c ? a ? 2 2

2bc

2bc

常选用余弦定理鉴定三角形的类型. (4)面积公式: S ? 1 aha ? 1 ab sin C ? abc .

2

2

4R

五、向



1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征. ??? ? ??? ? AB 2 . 几 个 概 念 : 零 向 量 、 单 位 向 量 ( 与 AB 共 线 的 单 位 向 量 是 ? ??? , 特 别 : ? | AB |

? ? ?? ? ? ?? ? ? ?? ? ? ?? ? AB AC AB AC ) ?? 、相等向量 ( ? ? ??? ? ? ??? ( ? ?? ) )? ?? ? 、平行(共线)向量(无传递性,是因为有 0 ) AB AC AB AC
?

(有传递性) 、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( a 在 b 上的

?

? ? ? ? ? a ?b 投影是 ? a cos ? a, b ?? ? ? R ) . b
3.两非零向量平行(共线)的充要条件

? ? ? ? ? ? ? ? a // b ? a ? ? b ? (a ? b)2 ? (| a || b |)2 ? x1 x2 ? y1 y2 ? 0 .
北京梦飞翔教育集团 18

两个非零向量垂直的充要条件

? ? ? ? ? ? ? ? a ? b ? a ? b ? 0 ?| a ? b |?| a ? b | ? x1 x2 ? y1 y2 ? 0 .
特别:零向量和任何向量共线. a ? ? b 是向量平行的充分不必要条件! 4.平面向量的基本定理:如果 e1 和 e2 是同一平面内的两个不共线向量,那么对该平面内的 任一向量 a,有且只有一对实数 ?1 、 ?2 ,使 a= ?1 e1+ ?2 e2. 5.三点 A、B、C 共线 ? AB、 共线; AC

??? ???? ?

??? ??? ??? ? ? ? 、 向 量 PA PB、 、 PC 中 三 终 点 A、 B C共 线 ? 存 在 实 数 ?、? 使 得 :

??? ? ??? ? ??? ? 且? P A? ? P? ? P C ? ? ? 1 . B
6.向量的数量积: | a | ? (a) ? a ? a , a ? b ?| a || b | cos? ? x1x2 ? y1 y2 ,
2 2

?

?

? ?

? ?

? ?

? ? a ?b ? cos? ? ? ? | a || b |

x1 x2 ? y1 y2
2 2 x ? y12 x2 ? y2 2 1



? ? ? ? ? ? ? a ? b x1 x2 ? y1 y2 . a在b上的投影 ?| a | cos ? a, b ?? ? ? 2 2 |b| x2 ? y2
注意: ? a, b ? 为锐角 ? a ? b ? 0 且 a、 不同向; b

? ?

? ?

? ?

? ? ? ? ? ? ? b ? a, b ? 为直角 ? a ? b ? 0 且 a、 ? 0 ;
? ? ? ? ? ? b ? a, b ? 为钝角 ? a ? b ? 0 且 a、 不反向; ? ? ? ? a ? b ? 0 是 ? a, b ? 为钝角的必要非充分条件.
向量运算和实数运算有类似的地方也有区别: 一个封闭图形首尾连接而成的向量和为零 向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两 边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即 两边不能约去一个向量;向量的“乘法”不满足结合律,即 a(b ? c) ? (a ? b)c ,切记两向量 不能相除(相约) . 7. || a | ? | b ||?| a ? b |?| a | ? | b |

?

?

? ?

?

?

? ? ? ? ? ? ? ? ? ? ? b 注意: a、 同向或有 0 ? | a ? b |?| a | ? | b | ? || a | ? | b ||?| a ? b | ; ? ? ? ? ? ? ? ? ? ? ? a、 反向或有 0 ? | a ? b |?| a | ? | b | ? || a | ? | b ||?| a ? b | ; b
北京梦飞翔教育集团 19

? ? ? ? ? ? ? ? (这些和实数集中类似) a、 不共线 ? || a | ? | b ||?| a ? b |?| a | ? | b | . b
x1 ? x2 ???? ???? ? ? ? ? x ? 2 , ???? MP ? MP2 1 ? 8.中点坐标公式 MP ? ? P 为 PP 的中点. 1 2 ? 2 y1 ? y2 ?y ? ? ? 2 ??? ? ???? ??? ? ???? ??? ??? ? ? AB AC AB AC ?ABC 中, AB ? AC 过 BC 边中点; ( ??? ? ???? ) ? ( ??? ? ???? ) ; ? ? | AB | | AC | | AB | | AC |

??? ? ??? ? ??? ??? ??? ? ? ? ??? ? AB ? 与AB共线的单位向量是 ? ??? . PG ? 1 ( PA ? PB ? PC ) ? G 为 ?ABC 的重 3 | AB |
心; 特别 PA ? PB ? PC ? 0 ? P 为 ?ABC 的重心.

??? ??? ??? ? ? ?

?

??? ??? ??? ??? ??? ??? ? ? ? ? ? ? PA ? PB ? PB ? PC ? PC ? PA ? P 为 ?ABC 的垂心;
???? ??? ? AC AB ? ???? )(? ? 0) 所在直线过 ?ABC 的内心(是 ?BAC 的角平分线所在直 ? ? ( ??? | AB | | AC |
线) ;

??? ??? ??? ??? ??? ??? ? ? ? ? ? ? ? | AB | PC? | BC | PA? | CA | PB ? 0 ? P ?ABC 的内心.
S? ABC ? ? 1 ??? ???? 1 AB AC sin A ? 2 2 ??? 2 ???? 2 ??? ???? 2 ? ? AB AC ? ( AB ? AC ) .

六、不等式
1. (1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往 往是不等式对应方程的根或不等式有意义范围的端点值. (2)解分式不等式 f ? x ? ? a?a ? 0? 的一般解题思路是什么?(移项通分,分子分母分解 g ?x ? 因式,x 的系数变为正值,标根及奇穿过偶弹回) ; (3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化 或换元转化) ; (4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按 参数取值分别说明其解集,但若按未知数讨论,最后应求并集. 2.利用重要不等式 a ? b ? 2 ab 以及变式 ab ? ( a ? b ) 等求函数的最值时,务必注意 a,
2

2

b ? R (或 a ,b 非负) ,且“等号成立”时的条件是积 ab 或和 a+b 其中之一应是定值(一 正二定三等四同时) .
北京梦飞翔教育集团 20

?

3.常用不等式有: a ? b ? a ? b ?
2 2

2

2

ab ?

2 (根据目标不等式左右的运算结构选 1?1 a b

用) a、b、c ? R, a ? b ? c ? ab ? bc ? ca (当且仅当 a ? b ? c 时,取等号)
2 2 2

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合 法、分析法 5.含绝对值不等式的性质:

a、 b 同号或有 0 ? | a ? b |?| a | ? | b | ? || a | ? | b ||?| a ? b | ; a、 b 异号或有 0 ? | a ? b |?| a | ? | b | ? || a | ? | b ||?| a ? b | .
注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转 化为最值问题) . 6.不等式的恒成立,能成立,恰成立等问题 (1) .恒成立问题 若不等式 f ?x ? ? A 在区间 D 上恒成立,则等价于在区间 D 上 f ? x ?min ? A 若不等式 f ?x ? ? B 在区间 D 上恒成立,则等价于在区间 D 上 f ? x ?max ? B (2) .能成立问题 若在区间 D 上存在实数 x 使不等式 f ?x ? ? A 成立,即 f ?x ? ? A 在区间 D 上能成 立, ,则等价于在区间 D 上 f ? x ?max ? A 若在区间 D 上存在实数 x 使不等式 f ?x ? ? B 成立,即 f ?x ? ? B 在区间 D 上能成 立, ,则等价于在区间 D 上的 f ? x ?min ? B . (3) .恰成立问题 若不等式 f ?x ? ? A 在区间 D 上恰成立, 则等价于不等式 f ?x ? ? A 的解集为 D . 若不等式 f ?x ? ? B 在区间 D 上恰成立, 则等价于不等式 f ?x ? ? B 的解集为 D ,

七、直线和圆
? 1 . 直 线 倾 斜 角 与 斜 率 的 存 在 性 及 其 取 值 范 围 ; 直 线 方 向 向 量 的 意 义 ( a ? ? (1, k ) 或

北京梦飞翔教育集团

21

? ? ) ? (0,1)(? ? 0) )及其直线方程的向量式( ( x ? x0 , y ? y0 ) ? ?a ( a 为直线的方向向量).应
用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为 k,但你是否注意到直 线垂直于 x 轴时,即斜率 k 不存在的情况? 2.知直线纵截距 b ,常设其方程为 y ? kx ? b 或 x ? 0 ;知直线横截距 x0 ,常设其方程为

x ? my ? x0 (直线斜率 k 存在时, m 为 k 的倒数)或 y ? 0 .知直线过点 ( x0 , y0 ) ,常设其
方程为 y ? k ( x ? x0 ) ? y0 或 x ? x0 . 注意: 直线方程的几种形式: (1) 点斜式、 斜截式、 两点式、 截矩式、 一般式、 向量式. 以 及各种形式的局限性. (如点斜式不适用于斜率不存在的直线,还有截矩式呢?) 与直线 l : Ax ? By ? C ? 0 平行的直线可表示为 Ax ? By ? C1 ? 0 ; 与直线 l : Ax ? By ? C ? 0 垂直的直线可表示为 Bx ? Ay ? C1 ? 0 ; 过点 P( x0 , y0 ) 与直线 l : Ax ? By ? C ? 0 平行的直线可表示为:

A( x ? x0 ) ? B( y ? y0 ) ? 0 ;
过点 P( x0 , y0 ) 与直线 l : Ax ? By ? C ? 0 垂直的直线可表示为:

B( x ? x0 ) ? A( y ? y0 ) ? 0 .
(2)直线在坐标轴上的截距可正、可负、也可为 0.直线两截距相等 ? 直线的斜率为 -1 或直线过原点;直线两截距互为相反数 ? 直线的斜率为 1 或直线过原点;直线两截距绝 对值相等 ? 直线的斜率为 ?1 或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体 几何中一般提到的两条直线可以理解为它们不重合. 3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成 的较小角,范围是 (0, ? ] ,而其到角是带有方向的角,范围是 (0, ? ) .

2

注:点到直线的距离公式

d?

| Ax0 ? By0 ? C | . A2 ? B 2

特别: l1 ? l2 ? k1k2 ? ?1(k1、k2都存在时) ? A1 A2 ? B1B2 ? 0 ;

l1 // l2 ?

? AB B ?bk ? bk (k 、k 都存在时) ? ?A C ? A C ?A
1 2 1 2 1 2 1 2 2 1 2 2

1 1



北京梦飞翔教育集团

22

l1、l2重合 ?

B B ?bk =?bk (k 、k 都存在时) ? ?A C ? A C 或B C ? B C A ?A
1 2 1 1 2 2 1 1 2 1 2 2 2 1 1 2 2



1

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解. 5.圆的方程:最简方程 x 2 ? y 2 ? R2 ;标准方程 ( x ? a)2 ? ( y ? b)2 ? R2 ; 一般式方程 x 2 ? y 2 ? Dx ? Ey ? F ? 0( D2 ? E 2 ? 4F ? 0) ; 参数方程

?xy ? R cos?? (? ? R sin

为参数) ;

直径式方程 ( x ? x1 )( x ? x2 ) ? ( y ? y1 ) ( y ? y2 ) ? 0 . 注意: (1) 在圆的一般式方程中, 圆心坐标和半径分别是 (? D , ? E ), R ? 1

2

2

2

D2 ? E 2 ? 4F .

(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:

x2 ? y2 ? 1 ? x ? cos? , y ? sin ? , x2 ? y2 ? 2 ? x ? 2 cos? , y ? 2 sin ? ,
x2 ? y2 ? 1 ? x ? r cos? , y ? r sin ? (0 ? r ? 1) ,
x2 ? y 2 ? 2 ? x ? r cos? , y ? r sin ? (0 ? r ? 2) .
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解, 重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、 割线定理、弦切角定理等等)的作用!” (1)过圆 x2 ? y 2 ? R2 上一点 P( x0 , y0 ) 圆的切线方程是: xx0 ? yy0 ? R2 ,
2 过 圆 ( x ? a2) ? ( y ? 2b) ? 上 一 点 P( x0 , y0 ) 圆 的 切 线 方 程 是 : R

( x ? a)( x0 ? a) ? ( y ? a)( y0 ? a) ? R2 ,
过圆 x2 ? y 2 ? Dx ? Ey ? F ? 0 ( D2 ? E 2 ? 4F ? 0) 上一点 P( x0 , y0 ) 圆的切线方程 是: xx0 ? yy0 ? D ( x ? x0 ) ? E ( y ? y0 ) ? F ? 0 . 2 2 如果点 P( x0 , y0 ) 在圆外, 那么上述直线方程表示过点 P 两切线上两切点的“切点弦” 方程. 如果点 P( x0 , y0 ) 在圆内,那么上述直线方程表示与圆相离且垂直于 O1P ( O1 为圆 心)的直线方程, | O1P | ?d ? R ( d 为圆心 O1 到直线的距离) .
2

北京梦飞翔教育集团

23

7.曲线 C1 : f ( x, y) ? 0 与 C2 : g ( x, y) ? 0 的交点坐标 ? 方程组

?gf ((xx,, yy)) ?? 00

的解;

过两圆 C1 : f ( x, y) ? 0 、C2 : g ( x, y) ? 0 交点的圆(公共弦)系为 f ( x, y) ? ? g ( x, y) ? 0 , 当且仅当无平方项时, f ( x, y) ? ? g ( x, y) ? 0 为两圆公共弦所在直线方程.

八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两 焦点(两相异定点) ,那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定 点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角 形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用. (1)注意:①圆锥曲线第一定义与配方法的综合运用; ②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 ? 点点距除以点 线距商是小于 1 的正数,双曲线 ? 点点距除以点线距商是大于 1 的正数,抛物线 ? 点点 距除以点线距商是等于 1.③圆锥曲线的焦半径公式如下图:

a ? ex

a ? ex

a ? ex

?(a ? ex)
a ? ex

x?

p 2

?(a ? ex)

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆
2 2 锥曲线的变化趋势.其中 e ? c ,椭圆中 b ? 1 ? e 、双曲线中 b ? e ? 1 .

a

a

a

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其?顶点、焦点、准线等相互之 间与坐标系无关的几何性质?”,尤其是双曲线中焦半径最值、焦点弦最值的特点. 注意:等轴双曲线的意义和性质. 3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路, 等价转化求解.特别是: ①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方 程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”. ②直线与抛物线(相交不一定交于两点) 、双曲线位置关系(相交的四种情况)的特殊 性,应谨慎处理. ③在直线与圆锥曲线的位置关系问题中, 常与“弦”相关, “平行弦”问题的关键是“斜率”、 “中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键
北京梦飞翔教育集团 24

是长度(弦长)公式 (

| AB |? ( x1 ? x2 ) 2 ? ( y1 ? y2 ) 2



| AB |? 1 ? k 2 | x2 ? x2 |? 1 ? k 2 ?

?x |a|

,

| AB |? 1 ?

?y 1 1 )或“小小直角三角形”. | y1 ? y2 | ? 1 ? 2 ? 2 k k |a|

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化. 4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、 交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代 数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等) ,这是解析几何的 两类基本问题,也是解析几何的基本出发点. 注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向 量的几何形式进行“摘帽子或脱靴子”转化, 还是选择向量的代数形式进行“摘帽子或脱靴子” 转化. ②曲线与曲线方程、 轨迹与轨迹方程是两个不同的概念, 寻求轨迹或轨迹方程时应注意 轨迹上特殊点对轨迹的“完备性与纯粹性”的影响. ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双 重身份) 、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处 理、“求值构造等式、求变量范围构造不等关系”等等.

九、直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算 2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向 量夹角的余角) ,三余弦公式(最小角定理,cos? ? cos?1 cos?2 ) ,或先运用等积法求点到 直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角 相等 ? 斜线在平面上射影为角的平分线. 3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线 面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需 规范. 特别声明: ①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.
北京梦飞翔教育集团 25

②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如 三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决. ③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立 空间直角坐标系,并运用空间向量解决问题. 4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、 侧面、对角面、平行于底的截面的几何体性质. 如长方体中:对角线长 l ? a2 ? b2 ? c2 ,棱长总和为 4(a ? b ? c ) ,全(表)面积为 (结合 (a ? b ? c)2 ? a2 ? b2 ? c2 ? 2ab ? 2bc ? 2ca 可得关于他们的等量 2(ab ? bc ? ca) , 关系,结合基本不等式还可建立关于他们的不等关系式) cos2 ? ? cos2 ? ? cos2 ? ? 2(1) ; , 如三棱锥中:侧棱长相等(侧棱与底面所成角相等) ? 顶点在底上射影为底面外心, 侧棱两两垂直(两对对棱垂直) ? 顶点在底上射影为底面垂心,斜高长相等(侧面与底面 所成相等)且顶点在底上在底面内 ? 顶点在底上射影为底面内心. 如正四面体和正方体中:
6a 3

arccos 1 3
arccos 3 3

V ? 2 a3 12

3a 3

a

3a 6

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法 等.注意:补形:三棱锥 ? 三棱柱 ? 平行六面体 三棱柱的体积关系是 . 分割:三棱柱中三棱锥、四三棱锥、

6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体. 正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱, 这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.

9. 球体积公式 V ? ? R3 , 球表面积公式 S ? 4? R 2 , 是两个关于球的几何度量公式. 它 们都是球半径及的函数.
北京梦飞翔教育集团 26

4 3

十 . 数列
1.定义: ⑴等差数列 ⑵等比数列 2.等差、等比数列性质 等差数列 通项公式 前 n 项和 性质 ①an=am+ (n-m)d, ②m+n=p+q 时 am+an=ap+aq ③ 成 AP ③ 成 GP ④ 成 AP, ④ 成 GP, 等差数列特有性质: 1 项数为 2n 时:S2n=n(an+an+1)=n(a1+a2n); ; ; 2 项数为 2n-1 时:S2n-1=(2n-1) ; ; ; 3.数列通项的求法: ⑴分析法;⑵定义法(利用 AP,GP 的定义) ;⑶公式法:累加法( ; ⑷叠乘法( 型) ;⑸构造法( 型)(6)迭代法; ; ⑺间接法(例如: ) ;⑻作商法( 型) ;⑼待定系数法;⑽(理科)数学归纳法。 注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。 4.前 项和的求法: ⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。 5.等差数列前 n 项和最值的求法: ⑴ ;⑵利用二次函数的图象与性质。 ①an=amqn-m; ②m+n=p+q 时 aman=apaq 等比数列 ;

十一, 复数
1.概念: ⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;

⑵z=a+bi 是虚数 b≠0(a,b∈R);
北京梦飞翔教育集团 27

⑶z=a+bi 是纯虚数 a=0 且 b≠0(a,b∈R) z+ =0(z≠0) z2<0; ⑷a+bi=c+di a=c 且 c=d(a,b,c,d∈R); 2.复数的代数形式及其运算:设 z1= a + bi , z2 = c + di (a,b,c,d∈R),则: (1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷ z2 = (z2≠0) ;

⑸ 性质:T=4; ; 4.运算律: (1) 5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。 6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;

十二,
1.事件的关系:

概率

⑴事件 B 包含事件 A:事件 A 发生,事件 B 一定发生,记作 ; ⑵事件 A 与事件 B 相等:若 ,则事件 A 与 B 相等,记作 A=B; ⑶并(和)事件:某事件发生,当且仅当事件 A 发生或 B 发生,记作 (或 ) ; ⑷并(积)事件:某事件发生,当且仅当事件 A 发生且 B 发生,记作 (或 ) ; ⑸事件 A 与事件 B 互斥:若 为不可能事件( ) ,则事件 A 与互斥; (6)对立事件: 为不可能事件, 为必然事件,则 A 与 B 互为对立事件。 2.概率公式: ⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B); ⑵古典概型: ; ⑶几何概型: ;

十三, 统计与统计案例
1.抽样方法 ⑴简单随机抽样:一般地,设一个总体的个数为 N,通过逐个不放回的方法从中抽取一个容 量为 n 的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。 注:①每个个体被抽到的概率为 ; ②常用的简单随机抽样方法有:抽签法;随机数法。 ⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的 规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
北京梦飞翔教育集团 28

注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ; ④按预先制定的规则抽取样本。 ⑶分层抽样: 当已知总体有差异比较明显的几部分组成时, 为使样本更充分的反映总体的情 况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。 注:每个部分所抽取的样本个体数=该部分个体数 2.总体特征数的估计: ⑴样本平均数 ; ⑵样本方差 ; ⑶样本标准差 = ; 3.相关系数(判定两个变量线性相关性) : 注:⑴ >0 时,变量 正相关; <0 时,变量 负相关; ⑵① 越接近于 1,两个变量的线性相关性越强;② 接近于 0 时,两个变量之间几乎不存在 线性相关关系。 4.回归分析中回归效果的判定: ⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。 注:① 得知越大,说明残差平方和越小,则模型拟合效果越好; ② 越接近于 1, ,则回归效果越好。 5.独立性检验(分类变量关系) : 随机变量 越大,说明两个分类变量,关系越强,反之,越弱。

十四, 常用逻辑用语与推理证明
1. 四种命题: ⑴原命题:若 p 则 q; ⑵逆命题:若 q 则 p; ⑶否命题:若 p 则 q;⑷逆否命题:若 q 则 p 注:原命题与逆否命题等价;逆命题与否命题等价。 2.充要条件的判断: (1)定义法----正、反方向推理; (2)利用集合间的包含关系:例如:若 ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A=B,则 A 是 B 的充要条件; 3.逻辑连接词:

北京梦飞翔教育集团

29

⑴且(and) :命题形式 p q; ⑵或(or) :命题形式 p q; ⑶非(not) :命题形式 p . 假 真 假 假 4.全称量词与存在量词 假 假

p q 真 真 真 假 真 假

pq pq 真 假 真 真 真 真

p 假 假

⑴全称量词-------“所有的”、“任意一个”等,用 表示; 全称命题 p: ; 全称命题 p 的否定 p: 。 ⑵存在量词--------“存在一个”、“至少有一个”等,用 表示; 特称命题 p: ; 特称命题 p 的否定 p: ;

十五,
1. 排列、组合和二项式定理

理科选修部分

⑴ 排 列 数 公 式 : =n(n-1)(n-2)…(n-m + 1)= (m≤n,m 、 n ∈ N*), 当 m=n 时 为 全 排 列 =n(n-1)(n-2)…3.2.1=n!; ⑵组合数公式: (m≤n), ; ⑶组合数性质: ; ⑷二项式定理: ①通项: ②注意二项式系数与系数的区别; ⑸二项式系数的性质: ①与首末两端等距离的二项式系数相等;②若 n 为偶数,中间一项(第 +1 项)二项式系 数最大;若 n 为奇数,中间两项(第 和 +1 项)二项式系数最大; ③ (6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。 2. 概率与统计 ⑴随机变量的分布列: ①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1; ②离散型随机变量:

北京梦飞翔教育集团

30

X x1 X2 … xn … P P1 P2 … Pn … 期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ; 注: ; ③两点分布: X P 0 1-p 1 p 期望:EX=p;方差:DX=p(1-p).

4 超几何分布: 一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其中恰有 X 件次品,则 其中, 。 称分布列

X P

0 …

1



m

为超几何分布列, 称 X 服从超几何分布。 ⑤二项分布(独立重复试验) : 若 X~B(n,p),则 EX=np, DX=np(1- p);注: 。 ⑵条件概率:称 为在事件 A 发生的条件下,事件 B 发生的概率。 注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。 ⑶独立事件同时发生的概率:P(AB)=P(A)P(B) 。 ⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差; (6)正态曲线的性质: ①曲线位于 x 轴上方,与 x 轴不相交;②曲线是单峰的,关于直线 x= 对称; ③曲线在 x= 处达到峰值 ;④曲线与 x 轴之间的面积为 1; 5 当 一定时,6 曲线随 质的变化沿 x 轴平移; 7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中; 越小,曲线越“高瘦”,表示总体分布越分散。 注:P =0.6826;P =0.9544 P =0.9974
北京梦飞翔教育集团 31

十六、导



1.导数的意义:曲线在该点处的切线的斜率(几何意义) 、瞬时速度、边际成本(成本为因 变 量 、 产 量 为 自 变 量 的 函 数 的 导 数 ) ( xn )? ? nxn?1 , (C )? ? 0 ( C 为 常 数 ) . ,

[ f ( x) ? g ( x)]? ? f ?( x) ? g ?( x) , [Cf ( x)]? ? Cf ?( x) .
2.多项式函数的导数与函数的单调性: 在一个区间上 f ?( x) ? 0 (个别点取等号) ? f ( x ) 在此区间上为增函数. 在一个区间上 f ?( x) ? 0 (个别点取等号) ? f ( x ) 在此区间上为减函数. 3.导数与极值、导数与最值: (1)函数 f ( x) 在 x0 处有 f ?( x0 ) ? 0 且“左正右负” ? f ( x) 在 x0 处取极大值; 函数 f ( x) 在 x0 处有 f ?( x0 ) ? 0 且“左负右正” ? f ( x) 在 x0 处取极小值. 注意:①在 x0 处有 f ?( x0 ) ? 0 是函数 f ( x) 在 x0 处取极值的必要非充分条件. ②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极 值.特别是给出函数极大(小)值的条件,一定要既考虑 f ?( x0 ) ? 0 ,又要考虑验“左正右 负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记. ③单调性与最值(极值)的研究要注意列表! (2)函数 f ( x ) 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的 “最大值”; 函数 f ( x ) 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的 “最小值”; 注意: 利用导数求最值的步骤: 先找定义域 再求出导数为 0 及导数不存在的的点, 然后比较定义域的端点值和导数为 0 的点对应函数值的大小,其中最大的就是最大值,最 小就为最小值. 4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处?”还是“过?”, 对“二次抛物线”过抛物线上一点的切线 ? 抛物线上该点处的切线,但对“三次曲线”过其上 一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点. 5.注意应用函数的导数,考察函数单调性、最值(极值) ,研究函数的性态,数形结合解 决方程不等式等相关问题. y
北京梦飞翔教育集团

f ?( x)
?2 1 ?3 ?1 O

32

x

4

十七、概率、统计、算法(略)

北京梦飞翔教育集团

33


相关文章:
人教版高中数学大纲.doc
人教版高中数学大纲 - 必修 1 第一章 1.1 计数原理 分类加法计数原理与分
最新高中数学教学大纲.doc
最新高中数学教学大纲 - 全日制普通高级中学数学教学大纲 数学是研究空间形式和数
高中数学知识大纲.doc
高中数学知识大纲 - 1.集(hexie)合(set) 1.1 集(hexie)
2018年高考理科数学考试大纲.doc
2018年高考理科数学考试大纲 - 理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部 2003 年颁布的 《普通高中课程方案(...
2017高考理科数学考试大纲.pdf
2017高考理科数学考试大纲 - 理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部 2003 年颁布的 《普通高中课程方案(实验...
高中数学大纲.doc
高中数学大纲 - 高中数学大纲 高中数学学习方法 一、课内重视听讲,课后及时复习
2017年高考大纲:理科数学(官方完整版).pdf
2017年高考大纲:理科数学(官方完整版)_高考_高中教育_教育专区。2017年高考大纲:理科数学(官方完整版) 理科数学Ⅰ.考核目标与要求根据普通高等学校对新生文化素质的...
高中数学必修1教学大纲.doc
高中数学必修1教学大纲 - 高中数学必修 1 教学大纲 1.集合 (约 4 课时
高中数学教学大纲.doc
高中数学教学大纲 - 数学是研究空间形式和数量关系的科学。数学能够处理数 据和信
高中数学教材内容大纲.doc
高中数学教材内容大纲 - (一)体系 必修 教材体系结构第1章 1.1 1.2
高中数学大纲.doc
高中数学大纲_高考_高中教育_教育专区。《数学学科知识与教学能力》(高中) 《数
普通高中数学教学大纲(试验修订版).doc
普通高中数学教学大纲(试验修订版) - 普通高中数学教学大纲 2002 年 4 月 全日制普通高级中学数学教学大纲 中华人民共和国教育部制订 数学是研究空间形式和数量关系...
教师资格高中数学考试大纲.doc
教师资格高中数学考试大纲 - 中公教育-给人改变未来的力量 《数学学科知识与教学
数学考试说明及考纲要求.doc
数学考试说明及考纲要求_高考_高中教育_教育专区。2016 年高考全国新课标卷数学考试说明及考纲要求根据教育部考试中心颁布的《2016 年普通高等学校招生全国统一考试大纲...
全日制普通高级中学数学教学大纲.doc
全日制普通高级中学数学教学大纲 - 全日制普通高级中学数学教学大纲 日期:200
全日制普通高级中学数学教学大纲(试验修订版).doc
全日制普通高级中学数学教学大纲(试验修订版) - 全日制普通高级中学数学教学大纲(试验修订版) 中华人民共和国教育部制订 数学是研究空间形式和数量关系的科学。数学...
普通高中数学教学大纲.doc
普通高中数学教学大纲 - 普通高中数学教学大纲,普通高中物理教学大纲,普通高中数学试卷分部,高中数学说课视频面试,高中数学课程视频,高中数学网络教学,高一数学视频教学...
教师资格证数学学科大纲(高中).doc
教师资格证数学学科大纲(高中) - 《数学学科知识与教学能力》 (高级中学) 一、考试目标 1.数学学科知识的掌握和运用。掌握大学本科数学专业基础课程的知识和高中...
《学习周报》大纲人教版高二数学.doc
《学习周报》大纲人教版高二数学 - 《学习周报》大纲人教版高二数学 期别 A(文、理)内容 B(文、理)内容 截稿 日期 20092010 学年数 学人教 大纲高 二 (上...
全日制普通高级中学数学教学大纲.doc
全日制普通高级中学数学教学大纲 - 全日制普通高级中学数学教学大纲 1)了解:对
更多相关标签: