当前位置:首页 >> 高三数学 >>

我的高考数学错题本--第7章 数列易错题


我的高考数学错题本

第 7 章 数列易错题
易错点 1.已知 Sn 求 an 时, 易忽略 n ? 1 致错. 1 1 【例 1】已知数列 {an } 的前项和为 Sn = n2+ n+1,求 {an } 的通项公式. 2 2

1 1 1 1 【错解】an=Sn-Sn-1=2n2+2n+1-2(n-1)2-2(n-1)-1=n,所以 an ? n .
【错因】 an ? Sn ? Sn?1 成立的条件是 n ? 2 ,当 n ? 1 要单独验证.

1 1 【正解】当 n=1 时,a1=S1=2+2+1=2; 1 1 1 1 当 n≥2 时,an=Sn-Sn-1=2n2+2n+1-2(n-1)2-2(n-1)-1=n.

?n, n ? 1 当 n=1 时不符合上式,所以 an ? ? . ?n, n ? 2
易错点 2.利用等比数列前 n 项和公式时,忽略公比 q ? 1 致错. 【例 2】求数列 1,3a,5a2 ,7a3 ,......(2n ?1)an?1,.....(a ? 0) 的前 n 项和. 【错解】由于 an ? (2n ?1)a n?1 (n ? N *) ,

Sn ? 1 ? 3a ? 5a2 ? 7a3 ? ...... ? (2n ? 3)an?2 ? (2n ?1)an?1

aSn ?

1 a ? 3a2 ? 5 a 3? 7 a 4 ? . .? .... n ?( 2 a n? ? 3 ) n? a (n2

1)
1 ? an ? (2n ? 1)a n ? 1 1? a

两式相减得 (1 ? a)Sn ? 1 ? 2a ? 2a2 ? 2a3.....2an?1 ? (2n ?1)an = 2?

1 ? a n (2n ? 1)a n ? 1 . ? Sn ? 2? ? (1 ? a)2 1? a
【错因】上述解法只适合 a ? 1 的情形. 事实上,当 a ? 1 时, Sn ? 1 ? 3 ? 5 ? 7 ? ...... ? (2n ? 3) ? (2n ?1) ?

n(1 ? 2n ? 1) ? n2 2

? 1 ? a n (2n ? 1) a n ? 1 ? ,a ?1 ? 2? 2 1? a 【正解】 S n ? ? (1 ? a ) . ?n 2 , a ? 1 ?
易错点 3.忽略数列与函数的区别致错.

? a x ?5 , x?6 ? * 【例 3】已知函数 f ( x) ? ? ,数列 {an } 满足 an ? f (n) ( n ? N ) ,且数列 {an } 是单调 a ?(4 ? ) x ? 4, x ? 6 ? 2
递增数列,则的取值范围是_______.

我的高考数学错题本

? ?a ? 1 ? ? a 【错解】由题有 ?4 ? ? 0 ,得 7 ? a ? 8 . 2 ? a ? (4 ? ) ? 6 ? 4 ? a 6?5 ? ? 2
【错因】忽略数列与函数的区别致错,实际上,数列是一串离散的点,不能直接将 n ? 6 带入到分段函数 的两个部分进行比较.

?a ? 1 ? a 48 ? ? a ?8. 【正解】由题有 ?4 ? ? 0 ,得 7 2 ? ? ? f (5) ? f (6)
【例 4】 已知数列 an ? n2 ? tn ? 2 在 [2, ??) 是递增数列,则实数的取值范围是_______. 【错解】依题意, n ?

t ? 2 ,解得 t ? 4 ,所以的取值范围是 (??, 4] . 2

【错因】数列的定义域是全体的正整数,不是实数,所以不能按照函数的处理办法. 【正解】依题意, a2 ? a3 ,即 4 ? 2t ? 2 ? 9 ? 3t ? 2 ,故 t ? 5 . 易错点 4.数列的定义域是全体的正整数. 【例 5】已知数列 an ? 13 ? 3n ,其前项和为 Sn ,则 Sn 的最大值是________. 【错解】由题意, a1 ? 10 , S n ? 值是为 S n ?

(10 ? 13 ? 3n)n 3 23 529 23 ? ? (n ? ) 2 ? ,当 n ? 时, Sn 的最大,最大 2 2 6 24 6

529 . 24 (10 ? 13 ? 3n)n 3 23 529 ? ? (n ? ) 2 ? ,当 n ? 4 时,离二次函 2 2 6 24

【错因】数列的自变量是正整数,不能取非正数. 【正解】方法 1:由题意, a1 ? 10 , S n ?

23 ? 4 ? 3 ? 42 ? 22 . 数对称轴最近,所以 Sn 的最大值是为 S4 ? 2
方法 2:令 an ? 13 ? 3n ? 0 ,解得 n ? 值为 S4 ?

13 ,即 {an } 前 4 项为正数,后面项均为负数,所以 Sn 的最大 4

23 ? 4 ? 3 ? 42 ? 22 . 2

易错点 5.乱用结论致错. 【例 6】 已知等差数列 ?an ? 的前 m 项, 前 2m 项, 前 3m 项的和分别为 Sm , S2m , S3m , 若 Sm ? 30, S2m ? 90 , 求 S3 m . 【错解】因为 Sm ? S3m ? 2S2m , Sm ? 30 , S2 m ? 90 ,所以 S3m ? 2S2m ? Sm ? 150 .

我的高考数学错题本 【错因】以为 ?an ? 为等差数列,则 Sm , S2m , S3m 也是为等差数列致错. 【正解】设数列的公差为 d ,则 Sm ? a1 ? a2 ? a3 ? ...... ? am ,

S2m ? a1 ? a2 ? a3 ? ...... ? am ? am?1 ? ..... ? a2m , S3m ? a1 ? a2 ? a3 ? ...... ? a2m ? a2m?1 ? ..... ? a3m
Sm ? (a1 ? m ?1 3m ? 1 5m ? 1 )m , S2 m ? Sm ? (a1 ? )m , S3m ? S 2 m ? (a1 ? )m 2 2 2

所以 Sm , S2m ? Sm , S3m ? S2m 是公差为 m2 d 的等差数列,所以 2 ? S2m ? Sm ? ? Sm ? S3m ? S2m . 即 2 ? (90 ? 30) ? 30 ? S3m ? 90 ,? S3m ? 180 . 易错点 6.乱设常量致错. 【例 7】数列 ?an ? 与 ?bn ? 的前项和分别为 S n , Tn ,且 Sn : Tn ? (5n ? 13) : (4n ? 5) ,则 a10 : b10 ? _______ 【错解】 则 an ? 所以 a10 : b10 ? 5: 4 . Sn ? (5n ? 13)k , Tn ? (4n ? 5)k , Sn ? Sn ? ? bn ? Tn ? Tn?1 ? 4k , 1 k5 , 【错因】从 Sn : Tn ? (5n ? 13) : (4n ? 5) 可知,比值 S n : (5n ? 13) = Tn : (4n ? 5) 随着项数的变化而变化,不 能设为常数,这里忽略了项数的可变性而致错. 【正解】 设 Sn ? (5n ? 13)nk , Tn ? (4n ? 5)nk , 则 an ?Sn ?Sn ?1? ( 1 0 n ?8 )k 其中 n ? 2 ,? an : bn ? (10n ? 8) : (8n ? 1) .所以 a10 : b10 ? 4:3. 易错点 7.用归纳代替证明致错. 【例 8 】 【 2016 年高考四川理数改编】已知数列 { an } 的首项为 1 , Sn 为数列 {an } 的前 n 项和, ,bn ? Tn ? Tn?1 ? (8n ? 1)k ,

Sn?1 ? qSn ? 1 ,其中 q>0, n ? N * ,若 2a2 , a3 , a2 ? 2 成等差数列,求 {an } 的通项公式;
ì ì a1 = 1 a1 =1 ? ? ? ? ? ? 2 ? 【 错解 】依 题意 í a1 + a2 = qa1 + 1 , 解 得 ? í a2 = 2 , 因为 a2 = a1a3 , 所 以 {an } 是 一个 等比 数列 ,所 以 ? ? ? ? ? ? ? ? ? 2a3 =3a2 + 2 ? a3 = 4

an = 2n- 1 (n ? N* ) .
【错因】由前 3 项成等比数列,就认为数列 {an } 为等比数列. 【正解】由已知, Sn+ 1 = qSn + 1, Sn+ 2 = qSn+ 1 + 1, 两式相减得到 an+ 2 = qan+ 1 , n ? 1 . 又由 S2 = qS1 + 1 得到 a2 = qa1 ,故 an+ 1 = qan 对所有 n ? 1 都成立. 所以,数列 {an } 是首项为 1,公比为 q 的等比数列. 从而 an =q n- 1 . 由 2a2,a3,a2 +2 成等比数列,可得 2a3 =3a2 + 2 ,即 2q2 =3q + 2, ,则 (2q +1)(q - 2) = 0 ,

我的高考数学错题本 由已知, q > 0 ,故 q =2 . 所以 an = 2n- 1 (n ? N* ) . 易错点 8.数列加绝对值后,认为其还是等差数列. 【例 9】在等差数列 ?an ? 中, an ? 3n ? 31,记 bn ?| an | ,求数列 ?bn ? 的前 30 项和. 【错解】依题意, bn ?| an | 也是等差数列, b1 ?| a1 |? 28 , b30 ?| a30 |? 59 , 所以 S30 ?| a1 | ? | a2 | ? | a3 | ?......? | a30 |?

(28 ? 59) ? 30 ? 1260 . 2

【错因】 这里易错点是 ?bn ? 也为等差数列, 而解题的关键是绝对值号内的 an 的正负号进行讨论, 当 n ? 10 时, an ? 0, n ? 11 时, an ? 0 【正解】 S30 ?| a1 | ? | a2 | ? | a3 | ?......? | a30 |

? ?(a1 ? a2 ? a3 ? ...... ? a10 ) ? (a11 ? a12 ? a13 ? ...... ? a30 )
?? 10(a1 ? a10 ) 20(a11 ? a30 ) ? =755. 2 2

易错点 9.使用构造法求数列通项公式时,弄错首项致错.

【例 10】已知数列{an}满足 a1=1, an?1 ? 2an ? 1 ,求 an 的通项公式.
【错解】?an?1 ? 2an ? 1(n ? N * ) ,? an?1 ? 1 ? 2(an ? 1),

??an ?1? 是以 2 为公比的等比数列 ?an ? 1? 2n?1 ? 2n?1 (n ? N * ) .
【错因】新数列的首项是 a1 ? 1 ? 2 ,不是 a1 . 【正解】?an?1 ? 2an ? 1(n ? N * ) ,? an?1 ? 1 ? 2(an ? 1),
n ??an ?1? 是以 a1 ? 1 ? 2 为首项,2 为公比的等比数列 ? an ?1 ?2 .



an ? 2n ?1(n ? N * ).


相关文章:
我的高考数学错题本--第7章 数列易错题.doc
我的高考数学错题本--第7章 数列易错题_高三数学_数学_高中教育_教育专区。我的高考数学错题本 第 7 章 数列易错题易错点 1.已知 Sn 求 an 时, 易忽略 ...
高考数学错题本第7章 数列易错题.doc
高考数学错题本第7章 数列易错题_数学_高中教育_教育专区。我的高考数学错题本 第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略 n ? 1 ...
【高考状元】数学错题本:第7章《数列》易错题(Word版,....doc
【高考状元】数学错题本:第7章《数列》易错题(Word版,含解析) - 我的高考数学错题本 第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略 n ? ...
【高考状元】数学错题本:第7章《数列》易错题(Word版,....doc
【高考状元】数学错题本:第7章《数列》易错题(Word版,含解析) - 我的高考数学错题本 第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略 n ? ...
我的高考数学错题本第7章 数列易错题.doc
我的高考数学错题本第7章 数列易错题_高三数学_数学_高中教育_教育专区。我的高考数学错题本第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略...
【高考状元】数学错题本:第7章数列易错题含解析.pdf
【高考状元】数学错题本:第7章数列易错题含解析 - 我的高考数学错题本 第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略 n ? 1 致错. 1 1...
高考状元数学错题本:第7章数列易错题含解析.doc
高考状元数学错题本:第7章数列易错题含解析 - 我的高考数学错题本 第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略 n ? 1 致错. 1 1 【...
高考数学错题本:第7章《数列》易错题(Word版,含解析).doc
高考数学错题本:第7章《数列》易错题(Word版,含解析) - 我的高考数学错题本 第 7 章 数列易错题 易错点 1.已知 Sn 求 an 时, 易忽略 n ? 1 致错....
【高考状元】数学错题本:第7章《数列》易错题(Word版,....doc
【高考状元】数学错题本:第7章《数列》易错题(Word版,含解析) - 我的高考数学错题本 第 7 章 数列易错题 易错点 1、已知 Sn 求 an 时, 易忽略 n ? ...
我的高考数学错题本--第6章 平面向量易错题.doc
我的高考数学错题本--6章 平面向量易错题_高三数学_数学_高中教育_教育专区。我的高考数学错题本 第 6 章 平面向量易错题易错点 1.遗漏零向量 【例 1】...
【高考状元】数学错题本:第9章复数易错题含解析.pdf
【高考状元】数学错题本:第9章复数易错题含解析 - 我的高考数学错题本 第 9 章 复数易错题 易错点 1.对复数的相关概念混淆不清 2 【例 1】 以下有四个...
《高考易错题集锦》专题七 数列.doc
高考易错题集锦》专题七 数列_数学_高中教育_教育...试卷第 3 页,总 3
我的高考数学错题本第6章 平面向量易错题.doc
我的高考数学错题本第6章 平面向量易错题_高考_高中教育_教育专区。第 6 章 平面向量易错题 易错点 1.遗漏零向量 【例 1】 已知 a ? (3, 2 ? m...
高中数学易做易错题精选:数列部分 教师版.doc
高考2014 高中数学易做易错题精选:数列部分一、选择题: 1.设 s n 是等差...( 7 D. ) 3 7 1 7 正确答案:C 错因:缺研究性学习能力 19.已知数列 {...
高考状元数学错题本:第3章函数易错题含解析.doc
高考状元数学错题本:第3章函数易错题含解析 - 我的高考数学错题本 第 3 章 函数易错题 易错点 1 求函数定义域时条件考虑不充分 【例 1】 求函数 y ? 1...
2013高考数学复习易做易错题选6--数学数列部分错题精选.doc
高考数学复习易做易错题数列部分一、选择题: 1. (石庄中学) 设 s n 是等差数列 {a n } 的前 n 项和, 已知 s 6 =36, 则 n=( ) A 15 B 16 ...
我的高考数学错题本:我的高考数学错题本第2章 命题....doc
我的高考数学错题本:我的高考数学错题本第2章 命题与简易逻辑易错题_...b ? c ? 0 ,不是等比数列,故答案是必要不充分 3.“ a ? 3 ”是“...
高考数学中的数列经典题与易错题(部分含答案).doc
高考数学的数列经典题与易错题(部分含答案)_数学_高中教育_教育专区。主要...(an ? 7) ? 分析:不要有思维定势。本题不用分分类讨论。 答案: Tn ? ?...
我的高考数学错题本第0章 错题本的制作_图文.doc
我的高考数学错题本 第0章 错题本的制作 专家研究近十余年来的高考状元的...解三角形 平面向量 6 7 8 9 10 数列 不等式 立体几何 解析几何 统计、统计...
我的高考数学错题本--第2章 命题与简易逻辑易错题.doc
我的高考数学错题本--2章 命题与简易逻辑易错题_高三数学_数学_高中教育_...b ? c ? 0 ,不是等比数列,故答案是必要不充分 3.“ a ? 3 ”是“...
更多相关标签: