当前位置:首页 >> 农学 >>

深水中的模型试验_图文

MODEL TESTING FOR DEEPWATER CONCEPTS
C.T. Stansberg Norwegian Marine Technology Research Institute A.S (MARINTEK), Trondheim, Norway

OGP Workshop on Technology Requirements for Floating Systems, London, UK, 23-24 April, 2001

Contents of presentation
- Deepwater metocean conditions - physical modelling
- Deepwater floating systems - physical modelling - Particular areas of experimental investigation - Laboratory limitations - and solutions - Areas of uncertainty and further development

Deepwater oil and gas fields (d ~ 500m - 3000m): Critical metocean design conditions
Waves
Norwegian Sea Atlantic Margin High High

Current
High

Wind
High

Others

Moder./High High

Gulf of Mexico
Offshore Brazil West of Africa (Newfoundland)

Steep/High
Moderate Low High

High
High High High

High
Moder. Moder. High Ice

Physical modelling of deepwater metocean conditions in a laboratory basin

MARINTEK’s 50m x 80m x 10m Ocean Basin
The Ocean Basin Laboratory
Double-flap wave maker Multi-flap wave maker Double-flap wave maker Multi-flap wave maker 50 m

Cross-section of Ocean Basin

Length: 80 m - Width: 50 m - Depth: 0 -10 m

S:\ ve rh a \ o sto \mta .p t o e dh u n vd p

80 m

OCEAN BASIN

TOWING TANK

20 01-0 4-17

Modeling of waves items of particular interest
- Nonlinear effects (crests; wave heights; kinematics) - Extreme waves (probability; mechanism; freak waves?) - Multi-directionality - Multiple-peak spectra (in frequency & in direction) - Non-stationary hurricanes (in frequency & in direction) - Repeatability - Minimum scale of reproduction - 1:150 ?

Second-order deep-water random wave model (numerical)

Modeling of waves Items of particular interest
- Nonlinear effects (crests; wave heights; kinematics) - Extreme waves (probability; mechanism; freak waves?) - Multi-directionality - Multiple-peak spectra (in frequency & in direction) - Non-stationarity (in frequency & in direction) - Repeatability - Minimum scale of reproduction?

Measured vs. second-order wave model

Modeling of waves Items of particular interest
- Nonlinear effects (crests; wave heights; kinematics) - Extreme waves (probability; mechanism; freak waves?) - Multi-directionality - Multiple-peak spectra (in frequency & in direction) - Non-stationarity (in frequency & in direction) - Repeatability - Minimum scale of reproduction?

Modeling of deep-water currents - challenges:
- Vertical profile (magnitude & direction) - Homogenous & constant current velocity / turbulence? - Full-depth limitations in available laboratory basins - Combine with equivalent force / numerical models
u

Example: 3000m depth trunc. at 1000m

Modeling combined metocean:
Wind waves + swell + current + wind
- Collinear & non-collinear - Optimal model scale - Modeling of rapid change in hurricane system?

Deepwater floating systems

Deepwater floating systems - physical modelling
Traditional hydrodynamic verification:
- Modeling of “complete” system hull+mooring+risers (+DP) - Scales ~1:50 - 1:100 - Dynamic (& static) coupling between floater & lines/risers - Individual line models - dynamic line tension - Line drag induced slow-drift damping - Complex behaviour of total system / “new” effects? - Extreme nonlinear responses in storm conditions / need for calibration of numerical models - Operations - Measurements: Vessel motions - Line forces - Relative wave Green sea - Slamming - Video observations

FPSO in extreme wave event

Semisubmersible in extreme wave event

Particular areas of experimental investigation
Motions - slow-drift forces in extreme waves with current - viscous damping - motion coupling effects - Dynamic line tension in extreme wave groups - Dynamic coupling to vessel motions

Mooring

Risers

- Steady drag forces - VIV (model testing of separate components)

Relative wave / Green Sea - Probability of green sea / negative air gap - Impact loads & structural responses Extreme responses Numerical analysis - non-Gaussian processes - combined / integrated with experiments

Numerical visualisation (from coupled analysis study)

Dynamic line tension: 1:55 model tests vs. coupled analysis

Laboratory limitations - and solutions
Challenge:
Depths ~ 1000m - 3000m: Too deep for testing at “conventional” scales (1:50 - 1:100) in available basins How to keep the benefits from “complete” system - couplings etc.?

Possible solutions:
- Ultra small scales (1:100 - 1:200) - scale effects?* - Integrated tests & computer analysis (“hybrid techniques”)* - Outdoor testing* - Numerical analysis only - New ultra-deep basin?

Not recommended: Truncation without subseq. computer-extrapolation*
* Studies carried out at MARINTEK: VERIDEEP; NDP; Deepstar

Ultra-small scale model testing: Comparing 3 scales

Verification tests on the P-26 project, a polyester taut mooring system

Testing in scales 1:100 - 1:150 (200) is feasible,
depending on floater, condition etc. Practical limitations today (environmental modelling) Scale effects on line tension can be accounted for; smaller effects on slow-drift Particular attention and care in preparation and execution Special limitations: Thruster modelling (> 1:100) Truss structure details Spar models with moonpool

Hybrid methods: An “off-line” procedure
Hybrid verification:
Computer program Calibration through numerical reconstruction Reduced depth Model tests

Numerical extrapolation

Full depth simulation

Design of truncated system:
(hybrid verification)

- Horizontal restoring force characteristics - Vertical coupling mooring / floater - Quasi-static single-line characteristics - “Representative” damping levels

Numerical reconstruction & extrapolation
(hybrid verification)

- Calibration / check of numerical code - coupled analysis

- System identification; in particular: slow-drift excitation & damping
- Sea state dependent parameters - Final full-depth simulation with calibrated code (coupled analysis)

Coupled analysis (RIFLEX-C) model of an FPSO system
ZG ZV

master node Vessel node XV beam element slav e node XG 15.28 m

bar elements

Empirical surge drift coefficients (semi in irreg. waves)

Example (NDP study):
Semi-submersible system in 3000m steel catenary mooring(semi-taut) Scale 1:150, truncated at 1100m (7.3m mod sc) Norwegian sea 100yr: Hs=16m Tp=18s Cu=1.3m/s Wi=48m/s

Initial check of method: An 1100m system truncated at 550m Extrapolated results compared to full-depth 1100m measurements

Final results: Results from truncated set-up (1100m) numerically extrapolated to 3000m

Promising experiences with the “off-line” hybrid procedure
Some notes for future applications: - Scale of truncated set-up should be > 1:100 - 1:125 - The method works technically fine, while improvements for efficient use are underway (efficient link between experiments and numerical analysis etc.) - Procedures for design of truncated set-up should be established - Uncertainties of 2-step method should be assessed - Guidelines for hybrid verification have been suggested, but should be further discussed and completed

Other hybrid methods:
- On-line (active) integration between truncated test set-up and computer simulations
Potentially a very interesting method. Sophisticated, power-consuming computer tools required: The need for “intelligent” algorithms should be evaluated (How intelligent should it be to represent a real verification?) Need for very large actuators in 6 DOF? - Verification of parts of the system (e.g. the floater only), or of the computer program itself?

Areas of uncertainties and further development:
- When do we need to use scales > 1:100? - More standard procedures to be established for hybrid techniques - Uncertainties in hybrid techniques - What is required for software used in deepwater verification - qualification? - On-line hybrid technique: intelligent software & actuator / control

- More standard procedures for extreme value estimation from model tests
- Viscous drift forces in high waves on currents - Higher-order drift forces on ship in high and steep waves - Metocean input: Multi-directionality / multiple-peaked spectra Deepwater currents: profile / turbulence Rapidly changing weather conditions?

- Particular problem arising in ultra deep waters: Operations in connection with intervention etc. / multi-body dynamics / floating pipelines

2000 m


相关文章:
水工模型试验_图文.ppt
水工模型试验第七章 试验设备与量测技术 7.1 供水系统 一、供水系统的分类 ...代表天然水库,模拟泄洪洞、泄水底 孔、中孔、深水闸门的水力特性、振动、掺气减...
深水半潜式平台模型试验与数值分析_图文.pdf
工程水池中对海洋结构物进行 的物理模型试验一直以来都作为获得这些重要数据 的有效手段,但由于浮式平台工作水深的日渐加大 和海洋工程水池尺度有限的矛盾,使深水浮式...
水工模型试验.._图文.ppt
水工模型试验第七章 试验设备与量测技术 7.1 供水系统 一、供水系统的分类 ...代表天然水库,模拟泄洪洞、泄水底 孔、中孔、深水闸门的水力特性、振动、掺气减...
深水半潜式平台模型试验与数值分析_张威_图文.pdf
深水半潜式平台模型试验与数值分析_张威_兵器/核科学_工程科技_专业资料。 第 ...而水平纵荡运动在模 型试验和数值分析的结果中都表现出了较明显的低 频运动...
深水港码头围堤和群桩结构的离心模型试验_图文.pdf
深水港码头围堤和群桩结构的离心模型试验 - 第26卷2004年 第5期 9月 岩
动力定位型试验-深水钻井船_图文.ppt
在水池的中间有一个直径为 5m, 深 20m的井,用于深水模型试验。 7 7 试
深水半潜平台风载荷试验分析_图文.pdf
对一座工作海域为我国南海的超深水钻井半潜平台 的风流载荷进行了计算和分析,将模型试验结果与解析解进行比较,进一步验证了平台风载荷计算模 块法的正确性,对结构...
特大型水中沉井基础局部冲刷模型试验研究_图文.pdf
通过河工模型试验分析了大型水中深井 下沉过程中 的局部冲 刷情况 , 并提出了...[ S] 深水沉井 基础碎 石防护 粒径起 动特 性 铁道标准设计 , 2007, ( ...
潮流模型试验_图文.ppt
潮流模型试验 - 潮流模型试验 潮流模型设计实例 以上海洋山深水港为例 费晓昕 张金林 0、概况 上海洋山港深水港区位于南汇嘴东南海域的大、小洋山处,距上海 市...
...沙水道工程局部冲刷试验研究Ⅱ:模型试验_图文.pdf
重点实验室,上海 201201) 摘要:采用局部正态模型对长江南京以下12.5 m深水...无护排方案试验中的坝头冲刷深坑 消失,排前无明显冲刷。 1. 无护排方案试验...
深水浮式防波堤结构形式的试验研究-2005.3.31_图文.pdf
深水浮式防波堤结构形式的试验研究-2005.3.31_建筑/土木_工程科技_专业资料。...2 % %#2 % 2( " # 波浪作用下沙床中的孔隙水压力响应模型试验研究 " #...
土工离心模型的试验原理_图文.pdf
蠕变时间 由表 1 可见 , 土工离心模型试验中 , 第 4 项颗 粒尺寸不满足...图 3 为三峡工程深水围堰的 实例。在进行局部模型试验后, 应对该局部模型及 ...
深水锚泊定位半潜式钻井平台性能数值与试验研究-2011_图文.pdf
采用 SESAM 软件中的 HydroD 模块, 对深水半潜平台进行频域分析, 获得其响应幅值算子曲线; 而模型试验过程中, 分别用白噪声和规则波试验获取平台的响应幅值算子。 ...
深海垂向流速剖面数值模拟_毛丞弘_图文.pdf
因此 , 开展海洋深水工程模型试验研究要求, 深水试验 池应有能力模拟垂直方向上不同流速剖面的深海海流。 上海交通大学设计、 建造中的海洋深水试验池长 50 m、 ...
深水钻井船应用现状与关键技术详解_图文.ppt
(6)、钻井船总体性能模型试验技术。钻井船模型试验 涉及到风、浪、流等复杂...管道涡激振动中的应用研究 (8) 自升式平台建造工艺研究 (9) 深水半潜式平台...
实验流体力学-相 似理论_图文.ppt
深水中进行炮弹模型试验,模型的大小为实物的1/1.5,若炮弹 在空气中的速度为
深水斜坡式防波堤结构形式及护面块体稳定性试验研究_图文.pdf
但在近年 /5 来一些深水大型港 口的防波堤设计 中发现 ,按照 规范确定的这部分块体的重量 ,在波浪物理模型 试验中不能满足稳定性要求 ,而需提高块体 自重 ,...
深水钻井船应用现状与关键技术_图文.ppt
深水钻井船应用现状与关键技术_交通运输_工程科技_专业资料。深水钻井船(Drillship) 现状与关键技术 孙丽萍,邓忠超 主要内容 1 深水钻井船研究的意义 2 深水钻井船...
...深水航道科学试验中心电气自动控制系统研制_图文.pdf
交通部长江口深水航道科学试验中心长江 口大比尺模型电气自动控制系统是实现长江口.
水中污染物扩散模型实验中的相似理论.pdf
水中污染物扩散模型实验中的相似理论 - 为了寻求天然河流中污染物扩散输移与室内模型试验的相似规律,文中以相似理论为基础,根据水中污染物扩散-降解方程及一级动力...