当前位置:首页 >> 高一数学 >>

正弦定理证明


正弦定理的证明解读 克拉玛依市高级中学 曾艳

一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1) ? ABC 是锐角三角形时, 当 设边 AB 上的高是 CD, 根据锐角三角函数的定义, C 有 CD ? a sin B , CD ? b sin A 。 由此,得
a
sin A

a
sin A ?

?

b
sin B , ?

同理可得

c
sinC

?

b
sin B


A

b

a B

故有

b
sin B

c
sinC .从而这个结论在锐角三角形中成立.

D

(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有 CD ? a sin ?CBD ? a sin ?ABC ,CD ? b sin A 。由此, 得
a
sin A ?

b
sin ?ABC , ?

同理可得
c
sinC .

c
sinC

?

b
sin ?ABC
b A a B D C

故有

a
sin A

b
sin ?ABC

?

由(1)(2)可知,在 ? ABC 中,

a
sin A

?

b
sin B

?

c
sinC

成立.

从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
sin A ?

b
sin B

?

c
sinC .

1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点 A,点 B 之间的距|AB|,可测量角 A 与角 B, 需要定位点 C,即: 在如图△ABC 中,已知角 A,角 B,|AB|=c, 求边 AC 的长 b 解:过 C 作 CD?AB 交 AB 于 D,则
AD ? c cos A

DC ?

BD c sin A c sin A cos C ? ? sin C tan C sin C cos C

b ? AC ? AD ? DC ? c cos A ?

c sin A cos C c(sin C cos A ? sin A cos C ) c sin B ? ? sin C sin C sin C

推论:

b c ? sin B sin C a b c ? ? sin A sin B sin C

同理可证:

2.利用三角形面积证明正弦定理? 已 知 △ABC, 设 BC = a, CA = b,AB = c, 作 AD⊥ 垂 足 为 D.?则 Rt△ADB BC, AD A 中, sin B ? ,? AD=AB·sinB=csinB.? ∴ AB 1 1 1 1 ∴ △ABC= a ? AD ? ac sin B .? S 同理,可证 S△ABC= ab sin C ? bc sin A .? 2 2 2 2 1 1 1 ∴S△ABC= ab sin C ? bc sin A ? ac sin B .? absinc=bcsinA=acsinB,? C ∴ D 2 2 2 sin C sin A sin B a b c ? ? ? ? 在等式两端同除以 ABC,可得 .? 即 . c a b sin A sin B sin C 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与

B

AB 的夹角为
AB ,?

90° 与 CB 的夹角为 90° -A,j -C.? 由向量的加法原则可得? AC ? CB ? j 的数量积运算,得到 j ? ( AC ? CB) ? j ? AB 由分配律可得 AC ? ∴ |j|

为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量

j ? CB ? j ? AB .?
j A

B

AC Cos90° CB Cos(90° +|j| -C)=|j| AB Cos(90° -A).?

a c ? ∴ asinC=csinA.? ∴ .? sin A sin C

C

另外,过点 C 作与 CB 垂直的单位向量 j,则 j 与 AC 的夹角为 90° +C,j 与 AB 的夹 角为 90° +B,可得
c b ? .? sin C sin B

(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为 j 与 为 90° 与 -C,j

AC 的夹角

AB 的夹角为 90° ∴ -B)?

a b c ? ? .? sin A sin B sin C

(2)△ABC 为钝角三角形,不妨设 A>90° ,过点 A 作与

AC 垂直的单位向量 j,则 j
C

A



AB 的夹角为 A-90° 与 CB 的夹角为 90° ,j -C.?
AB ,得 j·AC ?+j· =j·AB ,? CB
j

由 AC ? CB ?

a c ? 即 a· Cos(90° -C)=c· Cos(A-90° ∴ ),? asinC=csinA.? ∴ sin A sin C

A

B

另外,过点 C 作与 CB 垂直的单位向量 j,则 j 与 角为?90°+ B.同理,可得 4.外接圆证明正弦定理

AC 的夹角为 90° 与 AB 夹 +C,j

a b c b c ? ? ? .? ∴ sin B sin C simA sin B sin C

在△ABC 中,已知 BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结 BO 并延长交圆于 B′,设 BB′=2R.则根据直径所对的圆周角是直角以及同弧所 对的圆周角相等可以得到 c c ? 2 R .? ∠ BAB′=90° C =∠ ,∠ B′,∴ sinC=sinB′= sin C ? sin B? ? .? ∴ 2R sin C a b a b c ? 2 R, ? 2 R .? ? ? ? 2 R .? 同理,可得 ∴ sin A sin B sin A sin B sin C 这就是说,对于任意的三角形,我们得到等式? a b c ? ? .? sin A sin B sin C 二、剖析四种证明方法的本质联系 虽然正弦定理的有四种证明方法(也可以看成 5 种,对于第一种证明方法也 可以用向量的形式来表示,可以看成向量 CA 、向量 CB 在向量 CD 方向上的投影 相等) 虽然每种证明方法都用不同的数学知识从不同的角度去证明了正弦定理, , 但是仔细观察会发现有一条纽带一直联系在正弦定理的各种证明方法之间, 可以 说每一种证明方法离开这条纽带都是没办法成立的,这条纽带就是:直角三角形 思想。正弦定理的四种证明方法(在正弦定理的第一种证明方法中,用到的就是 最基本的通过三角形作高把斜三角形转化为直角三角形。第二面积法,三角形的 面积等于低乘高, 也是把一般的三角形问题转化为垂直关系来研究。第三种向量 法用到的也是向量的垂直关系。 第四种外接圆法也借助了直径所对的圆周角等于
900 这个特殊的直角三角形)都是利用了直角三角形;余弦定理的平面几何证明

方法,也是利用三角形做高转化成直角三角形来证明;在没学正余弦定理之前, 学生直接利用初中的知识来解斜三角形,也是转化成直角三角形来解。从这其中 我们可以发现直角三角形它那不可替代的特殊作用。所以,我觉得正弦定理的四 种证明方法的本质联系就是:直角三角形。 其实,研究正余弦定理就是为了解斜三角形,在没有正余弦定理之前,我们 只能够解直角三角形。 而正弦定理的发现也是借助于直角三角形,通过直角三角

形边角的关系发现了正弦定理。 而我们要证明正弦定理必须得借助已经学过的知 识,而在没有学习正余弦定理之前,我们仅能解得就是直角三角形,所以正弦定 理的各种证明方法都是通过建立构造和解直角三角形的基础之上, 所以正弦定理 的各种证明方法都会或多或少的借助“垂直”的关系。 三、我对正弦定理证明的一点想法 1、对于正弦定理的四种证明方法,我认为作高法和面积法是学生比较容易 接受的方法,因为正弦定理的发现也好,或是初中同学们对三角形的认识也好, 对于一般三角形问题通过作高转化成直角三角形问题是大家都很熟悉的, 所以接 受起来特别的容易, 所以用作高来证明正弦定理是最容易被学生接受和掌握的方 法。 而有了作高证明正弦定理的方法以后,要用面积法学生接受起来也就不会存 在很大的困难,因为所有的学生都知道,三角形的面积等于低乘高,所以作出三 角形的高以后, 通过老师的恰当引导,学生很容易就能联想到三角形的面积等于 低乘高, 从而也就较容易接受和掌握面积法证明正弦定理。而对于向量法证明几 何问题学生相对比较生疏, 所以不容易马上联想到,那么接受起来也就没有前面 的方法那么容易。 所以, 我觉得向量法是四种方法中学生比较不容易联想到的一 种方法。 2、对于正弦定理的四种证明方法,没有必要让学生全部掌握,我们可以根 据自己的教学特点和学生的实际需要选择合适的方法即可,但是,不管我们要选 择那一种证明方法, 都必须设置相应适合的教学活动,让学生能够更能理解定理 的证明, 并且能够培养学生一些分析问题解决问题的能力。下面针对几种证明方 法谈谈我自己的教学活动上的一些想法。 为了让学生能够理解为什么要通过做高来证明正弦定理, 我们可以在讲定理之前 设计一个斜三角形问题, 然后引导学生利用做高转化为直角三角形问题来解。例 如:已知?ABC 中, c ? 10km , A ? 45? , B ? 105? , 求边 b 和边 a 的长。 学生通过对这个三角形的求解过程会发现斜三角形 问题可以转化为直角三角形来求解。那么通过直角 三角形推导出正弦定理需要证明在锐角三角形和 直角三角形中是否成立的时候, 学生就会很自然的联想到斜三角形可以通过做高 转化成直角三角形问题, 从而, 做高法证明正弦定理就很容的被学生接受和掌握。 而有了做高法做铺垫, 可以引导学生联想到三角形的面积等于低乘高,从而引出 面积法证明正弦定理,并能得到三角形 ABC 的面积 1 1 1 S ? ab sin C ? bc sin A ? ac sin B 。 2 2 2 如果要用外接圆法来证明正弦定理, 我觉得从特殊的直角三角形入手是一个 a b c ? ? 比较不错的方法:正弦定理 等于一个常数,那么这个常数是 sin A sin B sin C 什么呢?它和三角形 ABC 有什么关系?引导学生发现在直角三角形(C= 900 )
a b c ? ? =c,这个常数刚好是直角三角形的斜边,从而可以引导 sin A sin B sin C 学生发现直角三角形的斜边就是其外接圆的直径, 从而引出外接圆法证明余弦定

中有

a b c ? 2R ? ? sin A sin B sin C 对于要用向量的方法来证明正弦定理, 我觉得设置这样的几个问题可能效果 也不错。问题 1:在我们学过的知识当中,还有那些知识是和长度、角度之间有 密切联系的?(学生马上会想到向量的数量积)问题 2:在三角形 ABC 中,如果 把三条边用向量来表示, 他们之间会有什么样的关系?(学生会联想到向量加法 的三角形法则)问题 3:如何用向量的方法来证明正弦定理呢?(学生可能不会 马上想到,那么可以再设置一个问题)问题 4:从前面学过的证明方法会给你什 么启示吗? (我觉得做高法这个比较容易接受的方法基本上老师都会讲,所以学 生在做高法的引导下对于做垂直向量就比较容易接受了),有了这四个问题做铺 垫,那么对于利用向量方法来证明正弦定理,学生接受起来应该不会难。 从教学实际上来看, 学生求解更容易让学生接受,而且我们可以从知识的最 近生长点(三角变换与解直角三角形)来引入解斜三角形,可能证明 1’并不是 最简单的证明,但它扎根于学生已有的知识,更符合学生的认知水平,而且正弦 定理最终是为解三角形实际问题服务的,让学生从解决实际问题入手,能培养学 生实际应用能力,正是基于从这个角度的思考,在实际上课的过程中,使用这种 方法引入,可能更容易被学生接受,在实际操作过程中,我们更倾向于,用 1’ 此入问题,用向量法证明。 以上就是我对正弦定理的证明的一点想法, 我知道很多老师会有更加深入的 理解以及更好的设计和想法,所以希望大家能够给予批评和指正

理,并得到


相关文章:
正弦定理的几种证明方法.doc
正弦定理的几种证明方法 - 正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1) 当 ? ABC 是锐角三角形时, 设边 AB 上的高是 CD, 根据锐角三角...
(经典)高中数学正弦定理的五种最全证明方法.doc
(经典)高中数学正弦定理的五种最全证明方法 - 高中数学正弦定理的五种证明方法 王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1) 当 ? ABC 是锐角...
正弦定理证明.doc
正弦定理证明_高一数学_数学_高中教育_教育专区。正余弦定理的几种证明方法 一、
正弦定理证明.doc
正弦定理证明 - 正弦定理的证明 一、正弦定理的几种证明方法 1.利用三角形的高
正弦定理的5种证明方法.pdf
正弦定理的5种证明方法 - 正弦定理的 5 种证明方法 在ABC 中,角 A、B、C 的对边分别为 a、b、c ,则理. 在这个定理的证明过程中蕴涵着丰富的几何意义...
正弦定理的几种推导方法.pdf
正弦定理的几种推导方法_数学_自然科学_专业资料。维普资讯 http://www
正弦定理与余弦定理的证明.doc
正弦定理与余弦定理的证明 - 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1) 当 ? ABC 是锐角三角形时, 设边 AB 上的高是 CD, 根据锐角...
正弦定理证明.doc
正弦定理证明 - 正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几
正弦定理的三种证明.doc
正弦定理的三种证明 - △ABC 中的三个内角∠A,∠B,∠C 的对边,分别用 a , b , c 表示. 正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即...
正弦定理的证明.doc
正弦定理证明 - 正弦定理证明 (方法一)可分为锐角三角形和钝角三角形两种情
正弦定理证明[1].doc
? ? .? 二、剖析四种证明方法的本质联系 虽然正弦定理的有四种证明方法(也可以看成 5 种,对于第一种证明方法也 可以用向量的形式来表示,可以看成向量 CA 、...
向量法证明正弦定理_图文.ppt
向量法证明正弦定理 - 5.9正弦定理、余弦定理1 正弦定理、余弦定理 正弦定理 教学目标 1、了解向量知识应用。 、了解向量知识应用。 2、掌握正弦定理推导过程。 、...
正弦定理证明六法_论文.pdf
正弦定理证明六法 - 以三角函数为基底分别从三角函数定义、投影定理、余弦定理、面
正弦定理的证明.ppt
正弦定理证明 - 问题 在直角三角形和等边三角形中,容易验证 a b c ==
正弦定理证明.doc
正弦定理证明 - 正弦定理 1.在一个三角形中,各边和它所对角的正弦的比相等,且
正弦定理推导过程_图文.ppt
正弦定理推导过程 - 刘丹丹 一天,我国海监船A正在某海域执行巡逻任务,突然发现
正弦定理证明.doc
正弦定理证明_职业规划_求职/职场_实用文档。正弦定理证明 正弦定理证明 1.三角形的正弦定理证明: 步骤 1. 在锐角△ABC 中,设三边为 a,b,c。作 CH⊥AB ...
正弦定理的几种证明.doc
正弦定理的几种证明 - 正弦定理的几种证明 邮编( 内蒙古赤峰建筑工程学校 迟冰 邮编(024400) ) 正弦定理是解决斜三角形问题及其应用问题(测量)的重要定 理, ...
正弦定理与余弦定理的证明.doc
正弦定理与余弦定理的证明 - 在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(R 为三角形外接圆的半径) 正弦定理(...
正弦定理12.doc
正弦定理12 - . . 白云中学 公开课教案 1.1.1 正弦定理 白云中学数学组 詹娟 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的...
更多相关标签: