当前位置:首页 >> 工学 >>

19.电阻矩阵+地损耗


X. RESISTANCE MATRIX
If both dielectric and conducting losses exist in a transmission line, the telegraph equation system will be revised as ? dI ( z ) = ([G ] + jω [C ])V ( z ) dz dV ( z ) = ([R ] + jω [L ])I ( z ) dz

?

where the resistance matrix

[ R]

accounts for the conducting loss.

Let the guided current and voltage waves in +z direction in a transmission line be expressed as I (z ) = I1 , I 2 ,?, I M c V ( z ) = V1 , V2 , ? , VM c where M c is the number of conductors,

[

]

T

? = I exp(? γz ) ? = V exp(? γz )

[

]

T

? ? I and V are the complex current amplitude vector and complex voltage
amplitude vector, respectively,
I i and Vi are the current and voltage at the i-th conductor, respectively,

γ = α + jβ is the propagation constant of the transmission line,

α is the attenuation constant, and β is the phase constant.
Substitution of these two expressions into the telegraph equations gives
? ? γI exp(? γz ) = ([G ] + jω [C ])V exp(? γz ) ? ? γV exp(? γz ) = ([R ] + jω [L ])I exp(? γz )

or
? ? γI = ([G ] + jω [C ])V ? ? γV = ([R ] + jω [L ])I

44

That will lead to

([G ] + jω [C ])([R ] + jω [L])I? = γ 2 I?
? ? ([R ] + jω [L])([G ] + jω [C ])V = γ 2V

If the transmission line is lossless, i.e.

[R] = [G ] = 0 ,
then

γ = α + jβ = j β

( jω )2 [C ][L]I?0 = ( jβ )2 I?0
? ? ( jω )2 [L][C ]V0 = ( jβ )2 V0
giving the following eigenvalue equations:

[C ][L]I?0 = v ?2 I?0 p
? [L][C ]V0 = v ?2V?0 p

? ? where I 0 and V0 represent, respectively, the complex current amplitude
vector and the complex voltage amplitude vector for the lossless line, and these two vectors should be real since the transmission line does not have any losses. v p denotes the phase velocity of the guided wave along the line. vp =

ω β

Since the transmission line is composed of M c conductors, these eigenvalue

?( ?( ?( equations will produce M c eigenvectors for current, I 01) , I 02 ) ,?, I 0M c ) , and ? ? ? M c eigenvectors for voltage, V0(1) ,V0(2 ) , ?,V0( M c ) :
T ( ( ( ?( I 0i ) = I 0i ) (1), I 0i ) (2 ), ? , I 0i ) (M c ) T ? V0(i ) = V0(i ) (1), V0(i ) (2 ), ? , V0(i ) (M c )

[

]

[

]

i = 1,2, ? , M c

45

Since [L ] and [C ] are real symmetrical, the matrices [C ][L ] and [L ][C ] should be mutually transpose and complex conjugate. In fact,

[([C ][L]) ]

T ?

= ([C ][L ]) = [C ] [L ]
T T

(

T T

)

= [L ][C ]

where the superscript T symbolizes the transpose and * the conjugate. It follows that the eigenvectors of [C ][L ] and the eigenvectors of [L ][C ] should be mutually orthogonal, namely bi-orthogonal,

?( ? ? I 0i ) ,V0( j ) = V0( j )

( )

?T

?( ?( I 0i ) = I 0i )

( )

?T

? ?( V0( j ) = I 0i )

( )

?T

? V0(i )δ ij

where δ ij the is Kronecker Delta, ,

δ ij = ?

?1 i = j ?0 i ≠ j

It also follows that the eigenvalues of [C ][L ] and the eigenvalues of [L ][C ] should be mutually complex conjugate. Since the phase velocity v p = ω β is real, these two matrices, [C ][L ] and [L ][C ] , possess the same eigenvalues,

v ?2 (1), v ?2 (2),?, v ?2 (M c ) p p p

Therefore, this transmission line system composed of M c conductors and one ground plane possess M c propagating modes.

?( ?( ?( In a lossless line system, all eigenvectors, either I 01) , I 02 ) ,?, I 0M c ) and ? ? ? V0(1) ,V0(2 ) , ?,V0( M c ) , should be real.
For a lossless system,

[ R ] = [G ] = 0
γ = α + jβ = jβ
? ? ? ? I = I 0 and V = V0

46

the earlier mentioned formulas
? ? γI = ([G ] + jω [C ])V ? ? γV = ([R ] + jω [L ])I

are reduced to ? ? I 0 = v p [C ]V0 ? ? V0 = v p [ L ] I 0 If dissipation is involved in a transmission line, then the complex power propagated along the longitudinal direction, i.e. + z axis, is
? P = ∑ Vm I m = I ? V T m =1 Mc

( )

and the average power is

PT = Re(P ) = Re I ? V
T

{(

)

}

The power loss per unit length of the line system is
PL = ? ?PT ?z

? ?P ? = Re?? ? ? ?z ?

? ? = Re ?? I ? ? ?

( )
T

T

?V ? I ? ? ?z ?z

( )

T

{( = Re{ I (
T

? ? V? ? ?
?T

= Re I ?

) ([R] + jω [L])I + [([G ] + jω [C ])V ]
? T ? T

V

}
V

? T

) ([R] + jω [L])I + (V ) ([G] + jω [C ])
c d

?T

}

= I?

( ) [R]I + (V ) [G ]V = P + P

where Pc and Pd denote, respectively, the conducting loss per unit length and the dielectric loss per unit length,
Pc = I ?

( ) [R]I
T T

Pd = V ?

( ) [G ]V
47

It will be proven below that the attenuation constant α in a dissipated transmission line is given by

α = Re(γ ) =

P P PL = c + d = αc + αd 2 PT 2 PT 2 PT

where α c and α d indicate the attenuation constant for conductors and the attenuation constant for dielectrics , respectively. P I ? [R ]I αc = c = 2 PT 2 Re I ? T V
T

( ) {( )
? T ?

}

αd =
[Proof] Since

Pd 2 PT

(V ) [G ]V = 2 Re {( I ) V }
T

I (z ) = I1 , I 2 ,?, I M c V ( z ) = V1 , V2 , ? , VM c then

[

]

T

? = I exp(? γz ) ? = V exp(? γz )

[

]

T

Mc ? T T ? ? P = ∑ Vm I m = I ? V = I ? V exp ( ?2α z ) m =1

( )

( )

PT = Re ( P ) = Re I ?
PL = ? ?PT ?z

? V } exp ( ?2α z ) } ? ? = ? Re {( I ) V } ( ?2α ) exp ( ?2α z ) = 2α P
T

{( )
?

? V = Re I ?

{( )

T

T

T

hence

α=

PL = αc + αd 2 PT

( I ) [ R ] I + (V ) [G ]V = 2 Re {( I ) V } 2 Re {( I ) V }
? T ? T ? T ? T

To calculate the resistance matrix, the attenuation constant for conductors is consider only,
P I ? [R ]I αc = c = 2 PT 2 Re I ? T V
T

( ) {( )

}

The numerator in this quotient is the dissipated conducting power per unit length, Pc , which, according to the perturbation theory, is approximately
48

equal to
Pc = I ?

( ) [R]I ≈ ∑ R ∫ ( J
T
Mc j =1 s l j

z

) j dl
2

M c is the number of conductors,
l j is the contour of cross section of the i-th conductor, R s is the surface resistance of conductors,

Rs =

πf ? σ

( Jz ) j

is the current density of the j-th conductor, which is approximately equal to

( Jz ) j =
(σ F ) j

1

? 0ε 0

(σ F ) j , j = 1, 2,? , M c

is the free charge density on the j-th conductor.

If each of M c conductors is driven by the elements of the i-th eigenvector,
i i i i ?i V0( ) = ?V0( ) (1) , V0( ) ( 2 ) ,? , V0( ) ( M c ) ? , here V0( ) ( j ) , j = 1, 2,? , M c , represents ? ?

the voltage between the j-th conductor and the ground, then the free charge
( density on the j-th conductor, σ F ) , can be determined in a way given
i j

( )

earlier, and the surface current density flowing on the j-th conductor, can be found in an above-mentioned formula,

(J( )) ,
i z j

( Jz ) j =

1

? 0ε 0

(σ F ) j ,

j = 1, 2,? , M c

The average power transmitted along the transmission line, PT , appeared in the quotient expression of α c is approximately equal to ? PT = Re ? I ? ? ?

( )

T

? ?? V ? ≈ PT 0 = Re ? I 0 ? ? ? ?

( )

T

? ?? V0 ? ≈ I 0 ? ?

( )

T

? V0

49

Therefore the attenuation constant for conductors, α c , becomes

αc =

Pc 2P T
? T T

( I ) [ R] I = 2 Re {( I ) V }
?



∑R ∫
j =1 s

Mc

?? T ? 2 I 0 V0

( )

lj

J 2 dl j

Since there exist M c current and voltage modes in the transmission line,

?( ?( ?( ? ? ? I 01) , I 02 ) ,?, I 0M c ) and V0(1) ,V0(2 ) , ?,V0( M c ) , then there are M c attenuation
constants, α c(1) , α c(2 ) , ? , α c( M c ) ,
Pc( i ) 2 PT

given by

α c(i ) =

(i )



∑ Rs ∫ J z( )
i j =1 lj i? T 0

Mc

( ) dl ?( ) ? ( ) , i = 1, 2,? , M 2(I ) V
2 j i 0

c

To calculate the resistance matrix alone, a transmission line is assumed to have conducting loss only, viz. [G ] = 0 , the telegraph equation for voltage
? ? ([R ] + jω [L])([G ] + jω [C ])V = γ 2V

is reduced to
? ? ([R ] + jω [L])( jω [C ])V = (α + jβ )2 V

? ? For a low loss transmission line, V ≈ V0 , the above equation becomes ? ? ([R] + jω [L])( jω [C ])V0 = (α + jβ )2 V0
and the equality of imaginary parts of both sides gives rise to
2 ? ? Im([R ] + jω [L])( jω [C ])V0 = Im(α + jβ ) V0

namely

? ? ω [R ][C ]V0 = 2αβV0

50

? ? It is inferred from I 0 = v p [C ]V0 that

[ R ] I?0 = 2αV?0
If the dielectric loss is not considered for the time being, [G ] = 0 , then the attenuation constant for dielectrics becomes zero,

αd

(V ) [G ]V = 0 = 2 Re {( I ) V }
? T ? T

and the attenuation constant α is simplified as

α = αc + αd = αc ≈

∑R ∫
j =1 s

Mc

?? T ? 2 I 0 V0 is transferred as

( )

lj

J 2 dl j

As a result, the equation

[ R ] I?0 = 2αV?0

[R]I?0 = 2α cV?0
As mentioned above, there are M c modes for α c , α c(1) , α c(2 ) , ? , α c( M c ) , which give rise to M c equations,

[R]I?0(i ) = 2α c(i )V?0(i ) ,

i = 1,2,?, M c

?( ?( ?( I 01) , I 02 ) ,?, I 0M c ) are modal currents given by

[C ][L]I?0 = v ?2 I?0 p
? ? ? V0(1) ,V0(2 ) , ?,V0( M c ) are modal voltages given by
? [L][C ]V0 = v ?2V?0 p

α c(1) ,α c(2 ) ,? ,α c( M

c

)

are modal attenuation constants given by

α c(i ) ≈

∑ Rs ∫ J z( )
i j =1 lj i ? T 0

Mc

( ) dl ?( ) ? ( ) , i = 1, 2,? , M 2( I ) V
2 j i 0

c

51

J z(1) , J z( 2) ,? J z(

Mc )

are modal current densities given by

(J( ))
i z

j

=

1

? 0ε 0

(σ ( ) ) ,
i F j

i, j = 1, 2, ? , M c

( ( ( σ F1) , σ F2) ,? , σ FM

c

)

are modal charge densities determined by putting each

?i element of modal voltage V0( ) , i = 1, 2,? , M c , to the each conductor.

Each of the following M c matrix equations

[R]I?0(i ) = 2α c(i )V?0(i ) ,

i = 1,2,?, M c

contains M c algebraic equations, and therefore there are M c2 equations. Let i = 1 , the first matrix equation becomes

[ R ] I?0(1) = 2α c(1)V?0(1)
where

? R11 ? R [ R ] = ? 21 ?? ? ? RM c 1 ?

R12 R22 ? RM c 2

R1M c ? ? ? R2 M c ? ? ? ? ? ? RM c M c ? ? ?
T

(1 (1 (1 ?(1 I 0 ) = ? I 0 ) (1) , I 0 ) ( 2 ) ,? , I 0 ) ( M c ) ? ? ?

1 1 1 ?1 V0( ) = ?V0( ) (1) , V0( ) ( 2 ) ,? , V0( ) ( M c ) ? ? ? in which the first equation of the first matrix equation is T

( ( ( R11 I 0 ) (1) + R12 I 0 ) ( 2 ) + ? + R1M c I 0 ) ( M c ) = 2α c( )V0( ) (1)
1 1 1 1 1

Take i = 1, 2,? , M c , all the first equations for each of the above M c matrix equations are similarly given by
( ( ( R11 I 0 ) (1) + R12 I 0 ) ( 2 ) + ? + R1M c I 0 ) ( M c ) = 2α c( )V0( ) (1)
1 1 1 1 1

( R11 I 0

2)

(1) + R12 I 0( 2) ( 2 ) + ? + R1M I 0( 2) ( M c ) = 2α c( 2)V0( 2) (1)
c c c c c

…………………………………………………………
( R11 I 0
Mc )

(1) + R12 I 0( M ) ( 2 ) + ? + R1M I 0( M ) ( M c ) = 2α c( M )V0( M ) (1)
c

52

The simultaneous equations can be solved for the first row of the resistance matrix

[ R] ,
R11 , R12 ,? , R1M c

All other rows of resistance matrix

[ R] [ R]

can be determined in a similar way, and therefore the is finally found,

XI. XI. GROUND LOSS
If there are two ground planes in a transmission line system, then the upper ground is considered to be an additional conductor and its loss computation has been described previously. Therefore only one ground plane need to be considered here. The z-directed narrow strip current J j ?l j of the j-th conductor produces a magnetic field on the ground plane,
? ? H j = ? H j? = ? J j ?l j 2πρ j , j = 1, 2,? , N

The magnetic field has a component tangential to the ground plane,
? J ?l ? ? y ? ? ? j j ?? j H jt = xH jx = xH j? cos ? j = x ? ? 2πρ ? ? ρ j ?? j ? ? ? ? ?

y
J z ?l j

( xi , 0 )
ρj

( xj , yj )

?j
Hj

?j

x
Ground Loss

53

The current of all conductors will produce a tangential magnetic field at the point

( xi , 0 )

on the ground,

? H t ( xi , 0 ) = ∑ H jt = x
j =1

N1

1 2π


j =1

N1

(x ? x )
i j

J j ?l j y j
2

+ y2 j

where N1 is the number of subsections for all conductor-to-dielectric interfaces. In accordance with the method of image, the total tangential magnetic field at the point

( xi , 0 )

due to all conductors will be doubled.

? H tg ( xi , 0 ) = 2 H t ( xi ,0 ) = x

∑ π
j =1

1

N1

(x ? x )
i j

J j ?l j y j
2

+ y2 j

It follows from the boundary condition that the current density at

( xi , 0 )

is

? ? J g ( xi , 0 ) = y × H tg ( xi , 0 ) = ? z

∑ π
j =1

1

N1

(x ? x )
i j

J j ?l j y j
2

+ y2 j

In addition to the conducting loss due to all conductors, Pc ≈ ∑ Rs ∫ J 2 dl j
j =1 lj Mc

the following ground loss needs to be added,
2 Rs ∫ J g dl lg

where lg is the width of ground plane, which is usually taken as 5 to 10 times of the transverse dimension of the transmission line system. After the ground loss is computed, the total power dissipated per unit length is given by
2 Pc ≈ ∑ Rs ∫ J 2 dl + Rs ∫ J g dl j
j =1 lj lg Mc

and the resistance matrix is calculated in the same way as described above. Proposed homework #1 Calculate the resistance per unit length of a parallel-wire transmission line
54

and compare the calculated result with that given by
? Rs ? R= πd ? ? ? ? 2 ( D d ) ?1 ? ? 2D d

where d is the diameter of the wire and D is the spacing between the two wires. Proposed homework #2 Calculate the resistance per unit length of a microstrip line and compare the calculated result with that available in some literatures.

REFERENCES
[1] Cao Wei and Xu Linqin, 《Theory of Electromagnetic Fields and Waves》, 》 Publishing House of Beijing University of Posts and Telecommunications, 1999. (in Chinese) [2] R. F. Harrington, 《Field Computation by Moment Methods》, Macmillan, 》 New York, 1968. [3] Cao Wei, R. F. Harrington, J. R. Mautz, and T. K. Sarkar, “Multiconductor Transmission Lines in Multilayered Dielectric Media,” IEEE Trans., MTT-32, pp.439-450, April 1984. [4] R. F. Harrington and Cao Wei, “Losses on Multiconductor Transmission Lines in Multilayered Dielectric Media,” IEEE Trans., MTT-32, pp.705-710, July 1984. [5] Liao Cheng’en, 《Fundamental of Microwave Techniques》 Xidian University , 》 Press, 1995. (in Chinese) [6] W. T. Weeks, “Calculation of Coefficients of Capacitance of Multiconductor Transmission Lines in the Presence of a Dielectric Interface,” IEEE Trans., MTT-18, Jan. 1970.

55


相关文章:
19.电阻矩阵+地损耗.doc
19.电阻矩阵+地损耗 - 电磁场 微波技术 计算电磁学 。研究生计算电磁学教材
输电损耗的分摊原则.pdf
19 卷第 2 期 2 004 年5 月 长沙电力学院...电网损耗分配给双边交易, 采用节点导纳矩阵推导, ...为研究的方 便, 忽略无功潮流, 对电阻为 R, 有...
特高压输电线路参数计算与分析_图文.pdf
因此,输电线路参数计算 最终归结为基本阻抗矩阵Z和...4.119×10-6 0.205×10-5 (0.195) 0.475×...X 2 U2 超、特高压输电线路的电阻功率损耗比较 ...
交流电机的数学模型及参数关系.doc
R、L 分别为电阻矩阵和电感矩阵,- 7 - (1-17)...不仅无励磁损耗以及与集 电环、电刷有关的损耗,而且...C 图 1-15 凸极同步电机的结构示意图- 19 - ...
等值电阻法计算配电网损耗的理论和实践.pdf
电阻,配电网总电流 I msr 流过它 所产生的损耗,...矩阵与所供电的配电变压器总容量平方列矩阵之积 表示...电损耗分析[期刊论文]-广东电力 2013(10) 19.黄...
视电阻率对模型电阻率的偏导数矩阵计算方法.pdf
电阻率对模型电阻率的偏导数矩阵计算方法 - 地质与勘探 第 37 卷 6 期第
电路英文单词表(按字母顺序).pdf
回路阻抗矩阵 回路电阻矩阵 回路电压源向量 回路分析法 无损耗线 集中参数电路
110kV-3kA高温超导电缆输电网络接入运行特性仿真计算与....pdf
[14] conducting, HTS )电缆具有传输容量大、损耗...地, L s, Rs 和 I s 分别对应屏蔽层电感 矩阵...的函数,超 导带材稳定层的电阻率拟合曲线为 [19]...
中小型电机定子侧结构件对损耗影响的时步有限元分析及....pdf
Rr 和 Rp 为定子、转子及压圈电阻矩阵; 3)对比上述计算结果,选择合适人工外...16.19×15.8 15.12×18 扣片槽对不同极数 5.5 kW 电机空载损耗的影响 ...
交流特高压输电线路无线电干扰特性_图文.pdf
( 本文假定输电 线路为均匀无损耗线路, 即电阻矩阵R和电导矩阵 e jkrs0 9 ...(19)-7SaFny.acnutcngriad efqecho giPsodcrfutn pwr unyanhe ooiaonoreeco...
彩色电视机原理第九章 PAL制解码电路及系统_图文.ppt
吸收深度能达到抑 可对损耗r 进行补偿, 达到吸收 ...G-Y色差矩阵 G-Y可通过电路采用电阻矩阵得到,信号...经V24 、V22两级 共基放大后由V20射随从19脚输出...
基于多导体传输线理论的脉冲变压器锥形绕组电压分布数....pdf
由于变压器绕组的匝 间电 容及对 地电容 等各 种...2. 电阻矩阵 2 变压器绕组的电阻损耗在高频下不易...19页 免费 无限长理想传输线上电压... 14页 ...
PI基本知识_edadoc_图文.ppt
(/ 面积)电容矩阵 Ca 直流电阻损耗 Rdc 交流阻抗损耗 Rac 介质损耗 G PI 模块使用的算法给定的电源地平面长为L,宽为W,铜厚为T, 电源地平面间距为S,介质...
OLED显示器及其馈电技术(精).doc
在这一方面,彩色 OLED 很好地顺应了 OEM 向更小型...器具有 3V~28V 的输出电压范围并具有 19mV 的...阳极和矩阵内的电阻损耗也同样降低到 n 分之一...
脉冲变压器特快速暂态电压分布计算_图文.pdf
(2005)11.0140-06 中国电机工程学报Proceedi】19...图3计算矩阵L时的网格剖分ng.3 M伪hingto∞l伽...内铁 变压器绕组的电阻损耗在高频下不能忽略,由 于...
含受控源一端口网络等值电阻的一种系统求法_图文.pdf
第期19 5 年1 2 月 西安公 路学 院学 报 8 J o r n a V e o e...为了能够方便地观察电路直接写出将受控源作为电阻元件处理的网孔 电阻 矩阵 [ R...
无损耗电阻器的Pspice仿真研究_论文.pdf
准确地了解电路工作的过程 . 1 无损耗 电阻器( L 的原理 LR)图1 示为 无损...() d,t. 图 1中的开关阵列由 S、2S、41S、3S 组成 , 其状态可用 矩阵...
电阻电路节点电压矩阵方程的建立及求解.pdf
电阻电路节点电压矩阵方程的建立及求解_信息与通信_工程科技_专业资料。电阻电路节点电压矩阵方程的建立及求解 第卷第期年月 江汉大 学学 报 自然 科学版印 电阻...
电阻率三维反演方法研究进展_论文.pdf
三维 电性结构,ptr19)通过电阻率法灵敏度矩阵揭示出:三度体用电剖 Sie(
HVDC入地电流在交流电网分布的仿真分析.pdf
损耗小、异步联网等特点在国内得到了越 来越多的...互阻矩阵可以由接地理论求解得到[15, 17-19, 25]...不大于入地电流总量(当交流电网等效电阻为 0 时,...
更多相关标签: