当前位置:首页 >> 其它课程 >>

四川省成都2017届高三二诊模拟考试数学试题(理)含答案

成都 2017 届二诊模拟考试数学试卷(理科) (时间:120 分钟,总分:150 分) 命题人: 刘在廷 审题人: 张世永 一.选择题(每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂 在答题卷上.) 1.已知集合 A ? {?2,?1,0,1,2} , B ? {x | lg x ? 0} ,则 A ? B =( ) A { 1} B { 0,1} C { 0,1,2 } D {1,2 } 正视 图 侧视 图 2.已知 i 是虚数单位,若 1 ? 7i ? a ? bi(a, b ? R) ,则 ab 的值是( 2?i ) 俯视 图 A -15 B -3 C3 D 15 3.如图, 某组合体的三视图是由边长为 2 的正方形和直径为 2 的圆组成, 则它的体积为 ( ) 4 4 A 4 ? 4? B 8 ? 4? C 4? ? D 8? ? 3 3 x ?1 4.为了得到函数 y ? log2 的图像,只需把函数 y ? log2 x 的图象 4 上所有的点( ) A 向左平移 1 个单位长度,再向上平移 2 个单位长度 B 向右平移 1 个单位长度,再向上平移 2 个单位长度 C 向左平移 1 个单位长度,再向下平移 2 个单位长度 D 向右平移 1 个单位长度,再向下平移 2 个单位长度 5. 某程序框图如图所示,若使输出的结果不大于 20,则输入的整数 i 的最大值为( ) A3 B4 C5 D6 6.如图,圆锥的高 PO ? 2 ,底面⊙O 的直径 AB ? 2 , C 是圆上一点,且 ?CAB ? 30 ? , ) P D 为 AC 的中点,则直线 OC 和平面 PAC 所成角的正弦值为( A 1 2 B 2 3 2 2 C 2 3 D 1 3 C D A O B 7. 若曲线 C1 : x ? y ? 2 x ? 0 与曲线 C2 : y( y ? mx ? m) ? 0 有四 个不同的交点,则实数 m 的取值范围是( A (? ) 3 3 , ) 3 3 3 3 , ] 3 3 B (? 3 3 ,0)∪(0, ) 3 3 3 3 ) ∪( ,+ ? ) 3 3 C [? D ( ?? , ? 8.三棱锥 A ? BCD 中, AB, AC , AD 两两垂直,其外接球半径为 2,设三棱锥 A ? BCD 的 侧面积为 S ,则 S 的最大值为( A 4 B 6 9.已知 a ? 则 ) C 8 D 16 ?? 1 2 ?2 ( 4 ? x 2 ? ex)dx ,若 (1 ? ax)2017 ? b0 ? b1x ? b2 x2 ? ?? b2017 x2017 ( x ? R) , ) b b1 b2 ? 2 ? ? ? 2017 的值为( 2 2 22017 A 0 B -1 C 1 D e 10.由无理数引发的数学危机一直延续到19世纪, 直到1872年, 德国数学家戴金德提出了 “戴 金德分割” ,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将 有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=?,M中的每一个元素都小于N 中的每一个元素,则称(M,N)为戴金德分割.试判断,对于任一戴金德分割(M,N) ,下 列选项中一定不成立的是( ) A M 没有最大元素,N 有一个最小元素 B M 没有最大元素,N 也没有最小元素 C M 有一个最大元素,N 有一个最小元素 D M 有一个最大元素,N 没有最小元素 1 3 1 2 mx ? nx ? x ? 2017 ,其中 m ?{2, 4, 6,8}, n ?{1,3,5, 7} ,从这些 3 2 函数中任取不同的两个函数,在它们在 (1, f (1)) 处的切线相互平行的概率是( ) 7 7 7 A B C D 以上都不对 60 30 120 y y z ? x ? ez 且 z ln ? x ,则 ln 的取值范围为( 12.若存在正实数 x, y, z 满足 ) z x 2 1 A [1, ??) B [1, e ? 1] C (??, e ? 1] D [1, ? ln 2] 2 11.已知函数 f ( x) ? 二.填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在答题卷的横线上.) 13. 在 ?ABC 中,边 a 、 b 、 c 分别是角 A 、 B 、 C 的对边,若 b cos C ? (3a ? c) cos B ,则 cos B ? . ?x ? y ? 4 ? 14. 已知点 P( x, y ) 的坐标满足条件 ? x ? y ? 0 ,若点 O 为坐标原点,点 M (?1, ?1) ,那么 ?x ? 0 ? ???? ? ??? ? OM ? OP 的最大值等于_________. 15.动点 M ( x, y ) 到点 (2, 0) 的距离比到 y 轴的距离大 2,则动点 M 的轨迹方程为_______. 16.在△ABC 中, ?A ? ? , D, E 分别为 AB, AC 的中点,且 BE ? CD ,则 cos 2? 的最小值 为___________. 三.解答题(17-21 每小题 12 分, 22 或 23 题 10 分,共 70 分.在答题卷上解答,解答应写出文字说 明,证明过程或演算步骤.) 17.设数列 {an } 的前 n 项和 Sn ? 2an ? a1 ,且 a1 , a2 ? 1, a3 成等差数列. (1)求数列 {an } 的通项公式; (2)求数列 { 1 ? n} 的前 n 项和 Tn . an 18. 为宣传 3 月 5 日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每 年级出 3 人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得 1 分,答错不 答都得 0 分,