# 初中升学突破辅导(竞赛级)第一讲 因式分解(一)

1．运用公式法

(1)a2-b2=(a+b)(a-b)；

(2)a2±2ab+b2=(a±b)2；

(3)a3+b3=(a+b)(a2-ab+b2)；

(4)a3-b3=(a-b)(a2+ab+b2)．

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2；

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)；

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中 n 为正整数；

(8)an+bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1)，其中 n 为偶数；

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1)，其中 n 为奇数．

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4；

(2)x3-8y3-z3-6xyz；

(3)a2+b2+c2-2bc+2ca-2ab；

(4)a7-a5b2+a2b5-b7．

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)2

=-2xn-1yn(xn-y)2(xn+y)2．

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz)．

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

＝(a-b)2+2c(a-b)+c2

=(a-b+c)2．

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

(a+b)3=a3+3a2b+3ab2+b3

a3+b3=(a+b)3-3ab(a+b)．

=［(a+b)3+c3］-3ab(a+b+c)

=(a+b+c)［(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca)．

a3+b3+c3-3abc

x16-1=(x-1)(x15+x14+x13+…x2+x+1)，

2．拆项、添项法

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8)．

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8)．

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8)．

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8)．

(1)x9+x6+x3-3；

(2)(m2-1)(n2-1)+4mn；

(3)(x+1)4+(x2-1)2+(x-1)4；

(4)a3b-ab3+a2+b2+1．

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3)．

(2)将 4mn 拆成 2mn+2mn．

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1)．

(3)将(x2-1)2 拆成 2(x2-1)2-(x2-1)2．

=［(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=［(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3)．

(4)添加两项+ab-ab．

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)［b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1)．

3．换元法

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5)．

(x2+3x+2)(4x2+8x+3)-90．

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90．

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1)．

(x2+4x+8)2+3x(x2+4x+8)+2x2．

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8)．

=6［(x4-2x2+1)+2x2］+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x］［3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3)．

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3)．

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2．

1．分解因式：

(2)x10+x5-2；

(4)(x5+x4+x3+x2+x+1)2-x5．

2．分解因式：

(1)x3+3x2-4；

(2)x4-11x2y2+y2；

(3)x3+9x2+26x+24；

(4)x4-12x+323．

3．分解因式：

(1)(2x2-3x+1)2-22x2+33x-1；

(2)x4+7x3+14x2+7x+1；

(3)(x+y)3+2xy(1-x-y)-1；

(4)(x+3)(x2-1)(x+5)-20．

...数学竞赛辅导(八年级)教学案全集第02讲_因式分解(二....doc