当前位置:首页 >> 数学 >>

三角函数历年高考试题集)

三角函数(1985 年——2012 年高考试题集)
一、选择题 1. tanx=1 是 x= A.必要条件
5π 的 4

。(85(2)3 分) B.充分条件 C.充要条件 。(86(4)3 分) B.周期为 D.既不充分也不必要条件

2. 函数 y= 2 sin2xcos2x 是 ? A.周期为 的奇函数 2 ? C.周期为 的奇函数 4 3. 函数 y=cosx-sin2x-cos2x+

? 的偶函数 2 ? D.周期为 的偶函数 4

17 的最小值是 。(86 广东) 4 7 9 17 19 A. B.2 C. D. E. 4 4 4 4 4. 函数 y=cos4x-sin4x 的最小正周期是 。(88(6),91(3)3 分) ? A.π B.2π C. D.4π 2 π 5. 要得到函数 y=sin(2x- )的图象,只须将函数 y=sin2x 的图象 。(87(6)3 分) 3 π π π π A.向左平移 B.向右平移 C.向左平移 D.向右平移 3 3 6 6 6. 若 α 是第四象限的角,则 π -α 是 。(89 上海) A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角

7. tan70°+tan50°- 3 tan70°tan50°的值是 A. 3 B.
3 3

。(90 广东)
3 3

C.-

D.- 3

8. 要得到函数 y=cos(2x-

? )的图象,只需将函数 y=sin2x 的图象 。(89 上海) 4 ? ? ? ? A.向左平移 个单位 B.向右平移 个单位 C.向左平移 个单位 D.向右平移 个单位 4 4 8 8

9. 函数 y=

sinx | cosx | tanx | cotx | ? ? ? 的值域是 | sinx | cosx | tanx | cotx

。(90(6)3 分)

A.{-2,4} B.{-2,0,4} C.{-2,0,2,4} D.{-4,-2,0,4} 10. 若函数 y=sin(ω x)cos(ω x)(ω >0)的最小正周期是 4π , 那么常数 ω 为 。 (92(2)3) 1 1 A.4 B.2 C. D. 2 4 注:原考题中无条件“ω >0”,则当 ω 取负值时也可能满足条件 11. 在直角三角形中两锐角为 A 和 B,则 sinAsinB 。(93(6)3 分) 1 1 A.有最大值 和最小值 0 B.有最大值 ,但无最小值 2 2 C.既无最大值也无最小值 D.有最大值 1,但无最小值 12. 角 α 属于第二象限,且|cos

α α α |=-cos ,则 角属于 2 2 2

。(90 上海) D.第四象限的角

A.第一象限的角 B.第二象限的角 C.第三象限的角 13. 函数 y=cotax 的最小正周期是 。(90 上海)
1

A.π a 14. 已知 sinα =

B.π |a|

C.

π a

D.

π |a|

4 ,并且α 是第二象限的角,那么 tanα 的值等于 。(91(1)3 分) 5 4 3 3 4 A.- B.- C. D. 3 4 4 3 5π 15. 函数 y=sin(2x+ )的一条对称轴的方程是 。(91(5)3 分) 2 π π 5π π A.x=- B.x=- C.x= D.x= 2 4 4 8

16. 如果右图是周期为 2π 的三角函数 y=f(x)的图像,那 y 么 f(x)可以写成 。(91 三南) A.sin(1+x) B.sin(-1-x) 1 C.sin(x-1) D.sin(1-x) 0 1 x π 1 17. 满足 sin(x- )≥ 的 x 的集合是 。(91 三南) 4 2 13π π 7π 5π A.{x|2kπ + ≤x≤2kπ + ,k∈Z} B.{x|2kπ - ≤x≤2kπ + ,k∈Z} 12 12 12 12 π 5π π C.{x|2kπ + ≤x≤2kπ + ,k∈Z} D.{x|2kπ +π ≤x≤2kπ + ,k∈Z} 6 6 6 18. 下列函数中,最小正周期为 π 的偶函数是 。(92 上海)

1 ? tan x x C.y=sin2x+cos2x D.y= 2 1 ? tan2 x 19. 已知集合 E={θ |cosθ <sinθ ,0≤θ ≤2π },F={θ |tgθ <sinθ },那么 E∩F 为区 间 。(93(11)3 分) π π 3π 3π 5π π A.( ,π ) B.( , ) C.(π , ) D.( ) , 2 4 4 4 4 6 π 20. 函数 y=cos(2x+ )的一条对称轴的方程是 。(93 上海) 2 π π π A.x=- B.x=- C.x= D.x=π 2 4 8 21. 设θ 是第二象限的角,则必有 。(94(4)4 分)
2

A.y=sin2x

B.y=cos

A.tan

?
2

? cot

?
2

(B)tan

?
2

? cot

?
2

(C)sin

?
2

? cos

?
2

? ? )+3cos(3x+ )的最小正周期是 。(95(3)4 分) 4 4 2? ? A.6π B.2π C. D. 3 3 5 23. 已知 θ 是第二象限的角,且 sin4θ +cos4θ = ,那么 sin2θ 等于 。(95(9)4 分) 9 2 2 2 2 2 2 A. B.- C. D.- 3 3 3 3 π 24. 在下列各区间中,函数 y=sin(x+ )的单调递增区间是 。(96 上海) 4 π π π π A.[ ,π ] B.[0, ] C.[-π ,0] D.[ , ] 2 4 4 2
22. 函数 y=4sin(3x+
2

(D)sin ? cos 2 2

?

?

25. y=sin2x 是 。(95 上海) A.最小正周期为 2π 的偶函数 B.最小正周期为 2π 的奇函数 C.最小正周期为 π 的偶函数 D.最小正周期为 π 的奇函数 ? ? 26. 当- ? x ? 时,函数 f(x)=sinx+ 3 cosx 。(96(6)4 分) 2 2 1 A.最大值是 1,最小值是-1 B.最大值是 1,最小值是- 2 C.最大值是 2,最小值是-2 D.最大值是 2,最小值是-1 x π 27. 函数 y=tan( ? )在一个周期内的图象是 。(97(3)4 分) 2 3 A. y B. y C. y D. y

-?

o

3

5? 3

x

o

? 6

7? 6

x

- 2?

o

3

4? 3

x

-?

o

6

5? 6

x

28. 函数 y=sin( A.

π -2x)+cos2x 的最小正周期是 3

。(97(5)4 分) D.4π

π B.π 2 29. 函数 y=cos2x-3cosx+2 的最小值为

C.2π

。(97(10)4 分) 1 A.2 B.0 C.- D.6 4 30. 已知点 P(sinα -cosα ,tanα )在第一象限,则在[0,2π ]内 α 得取值范围是 (98(6)4 分) ? 3? 5? ? ? 5? A.( , ) ? (? , ) B.( , ) ? (? , ) 2 4 4 4 2 4 ? 3? 5? 3? ? ? 3? C.( , ) ? ( , ) D.( , ) ? ( ,π ) 4 2 4 2 4 4 2 31. sin600°的值是 。(98(1)4 分) A.0.5 B.-0.5 C.



3 3 D.- 2 2 32. 函数 f(x)=Msin(ω x+φ )(ω >0)在区间[a,b]上是增函数,且 f(a)=-M,f(b)=M,则 函数 g(x)=Mcos(ω x+φ )区间[a,b]上 。(99(4)4 分) A.是增函数 B.是减函数 C.可以取得最大值 M D.可以取得最小值-M 1 33. 函数 y= 的最大值是 。(2000 安徽(10)4 分) 2 ? sin x ? cos x

2 2 2 2 -1 B. +1 C.1- D.-1- 2 2 2 2 34. 设 α ,β 是一个钝角三角形的两个锐角,下列四个不等式中不正确的是 徽(12)5 分)

A.

。(2000 安

B.sinα +sinβ < 2 1 α ?β C.cosα +cosβ >1 D. tan(α +β )<tan 2 2 35. 已知 sinα >sinβ ,那么下列命题成立的是 。(2000⑷5 分) A.若α 、β 是第一象限角,则 cosα >cosβ
3

A.tanα tanβ <1

B.若α 、β 是第二象限角,则 tanα >tanβ C.若α 、β 是第三象限角,则 cosα >cosβ D.若α 、β 是第四象限角,则 tanα >tanβ 36.在 (0,2? ) 内,使 sin x ? cos x 成立的 x 取值范围为 。(2002⑷5 分)

? ? ? ? ? 5? ? ?? ? ? ? 5? ? ? ? ? ? 5? 3? ? (A) ? , ? ? ?? , ? (B) ? , ? ? (C) ? , ? (D) ? , ? ? ? ? , ? 4 4 ? 4 2? ? 4 ? 4 ? ? ? ?4 ? ? 4 2 ? ? ? 4 37. 已知 x ? (? ,0) o x ? ,则 tgx ? ,s 。(2003⑴5 分) c 2 5

(A)

7 24

(B) ?

7 24

(C)

24 7

(D) ?

24 7

38. 函数 y ? 2 sin x(sin x ? cos x) 的最大值为 (A) 1? 2 39. “cosα =- (B) 2 ? 1 (C) 2

。(2003⑷5 分) (D)2

3 5? ”是“α =2kπ + ,k∈Z”的 。(2003 北京卷⑶5 分) 2 6 A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要条件 40.函数 y=sin(x+φ ) (0≤φ ≤π )是 R 上的偶函数,则φ = 。(2003 全国文⑸5 分) ? ? A. 0 B. C. D. π 4 2 二、填空题 2x 1. 函数 y=tan 的周期是____________.(87(9)4 分) 3

2. 函数 y= 2 ? log 1 x ?
2

tanx 的定义域是_____________.(89 上海)

3. 函数 y=2|sin(4x-

π )|的最小正周期是_________.(89 上海) 3

4. 函数 y=sin(π x+2)的最小正周期是_________.(91 上海) 5. sin15osin75o 的值是____________.(92(20)3 分) 6. 在半径为 30m 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截 面顶角为 120o, 若要光源恰好照亮整个广场, 则其高应为_______m(精确到 0.1m)(93(20)3 分) 1 7. 已知 sinθ +cosθ = ,θ ∈(0,π ),则 cotθ 的值是_______.(94(18)4 分) 5 8. 关于函数 f(x)=4sin(2x+ π )(x∈R),有下列命题:
3

①由 f(x1)=f(x2)=0 可得 x1-x2 必是π 的整数倍; ②y=f(x)的表达式可以改写成 y=4cos(2x- π );
6

③y=f(x)的图像关于点(- π ,0)对称; 6 ④y=f(x)的图像关于直线 x=- π 对称. 6 其中正确的命题序号是_________.(注:把你认为正确的命题序号都填上)(98(19)4 分)
4

2? ? x ? )的最小正周期是__________.(2000 安徽(15)4 分) 3 4 1 10. 已知 sinθ -cosθ = ,则 sin3θ -cos3θ 的值是__________.(86(16)4 分) 2 11. 函数 y=sinxcosx+sinx+cosx 的最大值是___________.(90(19)3 分) 12. 函数 y=sinx+cosx 的最大值是_________(90 广东) A 3 13. 在△ABC 中,已知 cosA=- ,则 sin =__________(90 上海) 2 5 θ 3π 4 14. 已知 π <θ < ,cosθ =- ,则 cos =____________(91 上海) 2 2 5 5π π 15. cos cos 的值是___________(92 上海) 8 8 16. 函数 y=sin2x-sinxcosx+cos2x 的最大值是___________(92 上海)

9. 函数 y=cos(

? =____________(92 三南) 8 18. 函数 y=cos2(ω x)(ω >0)的最小正周期是___________(93 上海) 19. 函数 y=sin2x-2cos2x 的最大值是___________(94 上海) ? 20. 函数 y=sin(x- )cosx 的最小值是___________.(95(18)4 分)
17. tg

6 x x 21. 函数 y=sin +cos 在(-2π ,2π )内的递增区间是______________(95 上海) 2 2

22. tan20°+tan40°+ 3 tan20°tan40°的值是___________.(96(18)4 分)
sin7 0 ? cos150 sin80 的值为______________.(97(18)4 分) cos7 0 ? sin150 sin80 24. 函数 f(x)=3sinxcosx-4cos2x 的最大值是___________(97 上海)

23.

三、解答题 1. 求 sin10° sin30° sin50° sin70° 的值.

(87(16)10 分)

2. 已知 sinα+sinβ=

1 1 ,cosα+cosβ= ,求 tan(α+β)的值. 4 3

(90(22)8 分)

3. 求函数 y=sin2x+2sinxcosx+3cos2x 的最小值,并写出使函数 y 取得最小值的 x 的集合. (91(21)8 分)

5

4. 已知 α、β 为锐角,cosα=

4 1 ,tg(α-β)=- ,求 cosβ 的值 5 3

(91 三南)

5. 已知

? 3? 12 3 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求 sin2α 的值. (92(25)10 分) 2 4 13 5

6. 已知 cos2α=

? 3? 7 5 ,α∈(0, ),sinβ=- ,β∈(π, ),求 α+β 2 2 25 3

(92 上海)

7. 已知角 α 的顶点与直角坐标系的原点重合,始边在 x 轴的正半轴上,终边经过点 P(-1,2), 2 求 sin(2α+ π)的值(93 上海) 3

? 1 3 8. 已知 sinα= ,α∈( ,π),tan(π-β)= ,求 tan(α-2β)的值(94 上海) 2 2 5

9. 求 sin220° +cos250° +sin20° cos50° 的值.(95(22)10 分)

10. 已知 tan(

? +θ)=3,求 sin2θ-2cos2θ 的值(95 上海) 4

6

11. 已知 sin(

? ? ? 1 +α)sin( -α)= ,α∈( ,π),求 sin4α 的值(96 上海) 4 4 2 6

12. △ABC 中,a,b,c 分别是 A,B,C 的对边,设 a+c=2b,A-C=

? ,求 sinB 值.(98(20)10) 3

13. 在△ABC 中,角 A、B、C 对边为 a、b、c.证明:

a2 ? b2 c
2

?

sin(A ? B) (2000 安徽(19)12 分) sin C

14. 已知函数 y=

1 3 cos2x+ sinxcosx+1,x∈R (2000⒄12 分) 2 2 ⑴当函数 y 取得最大值时,求自变量 x 的集合; ⑵该函数的图象可由 y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

? ?? 2 15.已知 sin 2? ? sin 2? cos? ? cos2? ? 1 , ? ? ? 0, ? 。求 sin ? 、 tan ? 值。(2002⒄12 分) ? 2?

7

?? ? ?? 3 ? 3? ? 16.已知 cos?? ? ? ? , ? ? ? 。求 cos? 2? ? ? 的值。(2002 天津⒄12 分) 4? 5 2 2 4? ? ?

17. 已知函数 f ( x) ? 2 sin x(sin x ? cos x) 。

(2003 全国文⒇12 分)

① 求函数 f(x)的最小正周期和最大值; ②画出函数在区间[-

? ? , ]上的图像。 2 2

18.已知函数 f(x)=cos 2 x-2sinx ? cosx-sin 2 x 。 (2003 北京卷⒇12 分) ①求 f(x)的最小正周期; ②求 f(x)的最大值和最小值。

19.已知函数 f(x)=sin(ω x+φ ) (ω >0,0≤φ ≤π )是 R 上的偶函数,其图像关于点 ? 3? M( ,0)对称,且在区间[0, ]上是单调函数,求ω 和φ 的值。 (2003 天津卷⒇12 分) 2 4

8


相关文章:
三角函数历年高考试题集).doc
三角函数历年高考试题集) - 学习必备 欢迎下载 三角函数(1985 年20
三角函数历年高考题汇编(修改).doc
三角函数历年高考题汇编(修改) - 1 、已知角 ? 的顶点与原点重合,始边与
历年高考试题《三角函数》整理.doc
历年高考试题三角函数》整理 - 题型特征及分值: §4.典型题型真题突破 题型 1:三角函数化简求值 【例 1】(2007 年江西)若 tan ? ?? π 4 ? ? ...
历年高考试题汇编--三角函数.doc
历年高考试题汇编--三角函数 - 精品资源 三角函数(1985 年2003 年高考试题集) 一、选择题 1. tanx=1 是 x= A.必要条件 5π 的 4 。(85(2)3 分...
三角函数历年高考题汇编(附答案)yidayin.doc
三角函数历年高考题汇编(附答案)yidayin_语文_初中教育_教育专区。超级好的资料,保证是精品文档 三角函数历年高考题汇编 选择题 1、函数 y ? 2 cos ? x ? 2...
历年高考数学三角函数经典试题.doc
历年高考数学三角函数经典试题 - 历届高考中的“三角函数的图像与性质”试题精选
高中数学三角函数历年高考题汇编(附答案).doc
高中数学三角函数历年高考题汇编(附答案) - 三角函数历年高考题汇编 一.选择题
高中数学三角函数历年高考题汇编附答案.doc
高中数学三角函数历年高考题汇编附答案_高考_高中教育_教育专区。文档均来自网络,如有侵权请联系我删除文档 一.选择题 三角函数历年高考题汇编 1、(2009)函数 y ...
全国卷历年数学高考真题汇编 三角函数_图文.doc
全国卷历年数学高考真题汇编 三角函数_高考_高中教育_教育专区。全国卷历年数学高考真题汇编 三角函数 2π ? ? 1(2017 全国 I 卷 9 题)已知曲线 C1 : y ?...
历年三角函数高考真题.doc
历年三角函数高考真题 - 历年三角函数高考真题 第一部分:选择题 1、 (201
高中数学三角函数专题复习(内附类型题以及历年高考真题....doc
高中数学三角函数专题复习(内附类型题以及历年高考真题..._中考_初中教育_教育专区。三角函数知识点与常见习题类型解法 1. 任意角的三角函数: (1) 弧长公式: l...
高中数学三角函数各地历年高考真题汇编(附答案).doc
高中数学三角函数各地历年高考真题汇编(附答案) - 三角函数历年高考题汇编 一.
第三讲 历年高考三角函数真题.doc
第三讲 历年高考三角函数真题 - 高考实战 三角函数 第三讲 历年高考三角函数真题 典型题型真题突破 【例 1】(2007 年江西 )若 tan ? A. ? 2 B. ? ?π ...
...三角函数专题复习(内附类型题以及历年高考真题,含答....doc
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案免费) - 类题:
全国卷历年高考三角函数及解三角形真题归类分析2018(含....doc
全国卷历年高考三角函数及解三角形真题归类分析2018(含答案)_高三数学_数学_高中教育_教育专区。本文档将2015年2018年高考全国卷对三角函数和解三角形的题目按...
全国卷历年高考三角函数及解三角形真题归类分析(含答案).doc
全国卷历年高考三角函数及解三角形真题归类分析(含答案)_高考_高中教育_教育专区
三角函数历年高考题汇编(附答案)yidayin.doc
三角函数历年高考题汇编(附答案)yidayin - 三角函数历年高考题汇编 选择
三角函数历年高考题汇编(修改).doc
三角函数历年高考题汇编(修改) - 1 、已知角 ? 的顶点与原点重合,始边与
高中数学三角函数历年高考题汇编(附答案).doc
高中数学三角函数历年高考题汇编(附答案) - 填空题(写出计算过程) 1.已知函
历年高考数学三角函数经典试题.doc
历年高考数学三角函数经典试题。超级好的资料,保证是精品文档 侯涩 饰排绑酿含柬