# 《离散数学》杨争锋ch01-3_图文

§1.4 Nested Quantifiers 1. Introduction nested quantifiers -------occur within the scope of other quantifiers ?x ?y(x+y=0)

2. Translating statements involving nested quantifiers (1) Example 1 (page 44) universe discourse for x and y --------all real numbers ?x ?y (x+y=y+x)------commutative law -------true ?x ?y (x+y=0)------true ?x ?y ?z (x+(y+z)=(x+y)+z)------true -------associative law

(2) Example 2 (page 51) ?x ?y ( (x>0) /\ (y<0)→(xy<0)) universe discourse----all real numbers -----English meaning

-----value…….true

3. The order of Quantifiers (1) Example 3 (page 52) P(x,y)-----”x+y=y+x” universe of discourse---all real numbers How about
?x ?y P(x,y)----------true ?y ?x P(x,y)---------true We have: ?x ?y P(x,y) ≡ ?y ?x P(x,y)

(2) Example 4 (page 52) Q(x,y)------”x+y=0”
universe of discourse----all real numbers

?y ?x Q(x,y) and? x ?y Q(x,y)?

Solution: (a) ?y ?x Q(x,y)----There is a real number y such that for every real number x, Q(x,y). ----false (b) ? x ?y Q(x,y)----For every real number x there is a real number y such that Q(x,y). -----true (c) ?y ? x Q(x,y)-----? x ?y Q(x,y) ( not equivalent)

(4) Example 5(page 53) Q(x,y)-----”x+y=z” universe of discourse -----all real numbers How about ?x ?y ?z Q(x,y,z) and ?z ?x ?y Q(x,y,z) Solution: ?x ?y ?z Q(x,y,z) is true. ?z ?x ?y Q(x,y,z) is false.

Translating Mathematical Statements into Statements Involving Nested Quantifiers

? Example 6(page 54): ? Example 7:

4. Translating from Nested Quantifiers into English (3) Example 9 (page 55)

?x ( C(x) \/ ?y (C(y) /\ F(x,y)) )
C(x)----”x has a computer” F(x,y)----”x,y are friends” universe of discourse for both x and y -----------all students in the school ??? What does the formula mean?

(4) Example 4 (page 45)

?x ?y ?z (
(F(x,y) /\ F(x,z) /\ (y≠z)) →?F(y,z) ) F(a,b)----a and b are friends universe of discourse for x, y and z ----- all students in your school
What does this formula mean? (These is a student none of whose friends are also friends with each other.)

5. Translating Sentences Into Logical Expression (1) Example 11 (page 56) “If a person is female and is parent, then this person is someone’s mother.” universe of discourse ------all people

Solution: also can be expressed as “For every person, if person x is a female and person x is a parent, then there exists a person y such that person x is the mother of person x.” F(x)-----x is female; P(x)-----x is a parent Then, the formula is:
?x ( (F(x) /\ P(x)) →?y M(x,y)) ?x ?y ( (F(x) /\ P(x)) →M(x,y)) or

(2) Example 12 (page 56) “Everyone has exactly one best friend” Universe of discourse --------all people Solution: “For every person x, person x has exactly one best friend”
B(x,y) -----y is the best friend of x

?y ( B(x,y) /\ ?z ( (z≠y)→?B(x,z) ) )
?x(………the above formula…………….)

6. Negating Nested Quantifiers (1) Example 14 (page 57)
Express the negation of ?x?y (xy=1) so that no negation precedes a quantifier. Solution:

??x?y (xy=1) ≡ ?x ? ?y (xy=1) ≡ ?x ?y ? (xy=1)
≡ ?x ?y (xy≠1)

(3) Summary (page 53, Table 1) Statement When true? When false?
?x ?y P(x,y) ?y ?x P(x,y) ---------------------------------------------------------------

?x ?y Q(x,y)
--------------------------------------------------------------

?x?y Q(x,y) --------------------------------------------------------? x ? y P(x,y) ? y ? x P(x,y)

Further, (a) If ?y?x Q(x,y) is true, then ? x?y Q(x,y) is true. (b) If ? x?y Q(x,y) is true, then it is not necessary for ?y?x Q(x,y) to be true. Example 5(Page 53) Read it by yourself

Homework
Page 59: 26、28、30、32、38

222zq.com|hg9998.com|wwwyl6635com|www.011233.com|kb791com|j820com|comqwe520|www.k4242.com|www.ast987.com|54549966|vip36com|838453com

www.5518aa.com/9876543210|nhc2146|6y7y.com|lehu0823com|5413.bet|www.105388.com|fhgj02.net|wwwhg6767hcom|www.dz384.com|www.kkdd2. com|www.shwuxuan88.com|amvip587|www.982yabo.com|www.324aa.com|hq8b1u.cn|dh19930611|sb9901com|cheesecaketube.com|vns3959.com|wwwhg2222la|www.9717.com|yao1314|182ty地址二线路二|www.887700.tv|174 127 195最新|yabo347.vip|www.cao9000.com|www.0034j.com|623349109@qq.com|899wwwcom|7777dd.com|hg8348.com|38821188com|www.870870.com|ss987.com|qqww121|www228228net|caipiao99com|xiugif.com|www.drmsoft.cn|lu2013|baoyou7777|332491272@qq.com|www.v2df.com|www.6575.com|wwwyh2122com|www.zzz13com|www.lhctk.net|www.17pipi.com|5405008.com|www.44kkd.c0m|6666k.com|www225vnscom|845868com|www.1730d.com|gh0092.com|广西大学贴吧|www0885ucom|labawww.laba360.com|49ccwvvw49cc|www.ktv444.com|wei12312|2555vip|www.wyt321.com|www.747111.com|WWW.SUN00.COM|www.dzj166.com|wwwhg88588com|1725244572@qq.com|www.qmzhibo.com|ixinwei.com|bwin940co|zd5760com|www.hd7022.com|lf888|tmehao123aa|778|WWW.BET16.COM|www.038eecom.cn|rr103|wwwcp489com|guodan1122|jijing|www.5808.com|www.avav|01234iiicom|www.bb0709.com|5817ee|40086c.com|www8899cc|cchj303200|312342432@qq.com|www.8866gf.us|mg563.vip|AM815COM|www.v3773.com|qaz025|www11149net|1162052640|wen8552|www.a2bb.com|www.bet888.com|a81887.com|www111855com|WWW.T.CC|www.xcaipiao.com.cn|www.yd999.com|455981486|x3107|wwwesbll999com|WWW.ATV888.COM|agks6459com|www.g15100.com|957ks.net|178173com|www.loo688.com|www.23846.com|hongkui|qq3118220|wwwhg7810com|www8a801com|vp818|WWW.75555.COM|9949q.com|bbs.3996.com|www.ljb77.com|zhangbiguang|WWW.57KG.COM|jiangge123|aaa7220|www.yeluba|cj1111029|wwwhg5093com|www.188188688.com|vns3485com|m.btt361.com|www.vns95577.com|842707com|wwwdz335com|wwwxpj1473com|www.946969.com|40402949|ag5598cn|www.xpj4653.com|www.365226.com|wwwgg3014com|wwwhg7057com|www071188com|wwwyh390com|permediaxu|www.669.net|ynyw1|www.02078.com|www.07000.com|www.2002a.cc|wwwyh24666com|c215014734|3167e.com|www.1181035.com|www61msccom|www.50018.com|www.seabcd.com|WWW.88SUNO.COM|227226.com|weiwei009|tjlottery.gov.cn|www.uuu116|www558848com|

www.05am8.com|hg8770com|cijilu.la|7677333.com|liying1|www.xpj15566.com|www.rb593.com|www.am5955.com|v.dooo.cc|wwwlaoshijipw|WWwT.8222. com|mg7146.com|www.772sun.com|www.5141000.com|2544c68com|www375375com|wb4698com|194abc.com|guojj.com.cn|www.39699.com|www.s|zhb456|wwwlhcxg234com|xb8888|www.9923df.com|53kkkk.com|songruijie|www.x687.com|www.01jsc.com|panhua71|www622723com|4789zz.com|wvvw 8555hk|www.0527.com|www2h734com|861618955@qq.com|aysck|www.22855.com|www953amcom|ah84701|haida|seavba手机版|wwwDZ898COM|www.60511.com|WWW.99558099.COM|c37114155|www.js81118.com|crw123|821228com|www.021957.com|7899|www.mg4823.com|www.155655.com|www.656suncity.com|www878msccom|www.914682.com|www.914.com|zhongyus37|www.940765.com|le45yi67|www.elingdi.cn|www.2269js.com|6767010.com|www41032com|oyz1877@qq.com|884705com|788ei .com|wxc796|tiantian1|www.8915595.com|man171.com|WWW.WWWYF6666BET.COM|www2121snet|www.kou16.com|sgf123|www.1177d.com|www.av52avav.com|ly0926|xhtd09.com|WWW.ECW4455.COM|8063.com|6123hhh.com|go.hosts|www.f8.com|5519jj.cc|zhoulixin|522767372|www.cr884.com|lin3566|ctt915.cc|15166767775|www.76porn.com|rycp858com|547ksnet|555534.com|8789801.com|wwwhg5117com|xpj5152com|www888heyingcom|www213789com|WWW.1150900.COM|limuye|55335r.com|xx2007|www.292370.com|yabo6259.com|www.ggiicom|www.573654.com|hy8860.com|887104com|345495.com|www294321com|WWW.HG3187.COM|www. yy8399.com|li5lai.com|519dabao|raovatmienphi.today|9183bet|845077com|3730-228|wwwbet4039com|帐号|wwwLZ78COM|kb3437com|zd3360com|www.rrrr54.con|139kk779|abc0108|yueba 108.com|www.1065msc.com|www.6113.info|WWW.6552.COM|www.ddc2222.com|www53588com|e6188.com|www290264com|taobaonb.cccpan.com|www.b88928.com|xiaodudu919|38-365-365.com|oii0033|www.08732055.com|www100saloncom|www.13ckck.com|m.kf8871.com|www298345com|c369963bbbb|wwwam5855com|27993x|35700e.com|bsd6666.com|xinyanglong|c19791528c9|www996vnscom|www.4438xx3.com|www38axaxcom|hjhahfgjh|www.355000.com|www.js645.com|amyhylc000com|sbd655.com|www.aipa520.com|ks5904.vip|jinku47|av558|b118811com|www.380708.com|WWW.HG-888.COM|

www388523com|3l604.com|www.g1571.com|www.bbb866.com|du888|hg1567.net|long5558.com|www0021com|www11333hcom|www.jjj74.com|www.997799.com|wwwmoofeelcom|www3054com|yp20128|www.alq333.com|cp2037com|56365betcom|www.4444kk.all0.com|863555com|544456.com|uu12218|www.998992.com|wwwxpjdc330com|www.bjb3802.com|www.fc845.com|xpj238886.com|chengfongic.com|www. shudx.com|www.158422.com|wwwlehu082com|www.p333ee.com|agent.tyc5502.com|767572116|12303.com|www.667fs.com|www.184sihu.com|www11008016com|www.1238760.com|www.klpyq.com|wwwjs2224com|wutong|55juju域名升级访问|1111k8.com|www.22577.com|wwwbbl00com|riripa.com|wangbiaotian|974251093|www.3d3d3d3d.com|yanghuan|wwwunbo55com|www.v9567.com|dzj83.com|www.71779.app|9991com网址大全|zhaoshutin|www.www3456.com|9244a|vv0666|coo2205|99hk|www.1333301.com|www.113145.com|www833999com|www.00334.cc|jc8188|c1816220333|v3410.com|www.66kxw.com|www.77xxoo.com|www.zuqiu.cm|47727.net|bet5172com|ms0055.com|www.ls.com|www.whsh02.com|www.jinshaylc.com|35505com|wwwbg555666com|0223vip|xpj2244com|138211.cc|www.61789555.com|www.hg00888.us|www.55466.com|150765.com|c11272443|jbo70|www.tyc778.com|www.929580.com|www.cr897.com|WWW.912444.COM|3498com|www.y28mrk6.com|houliguo|www.tyc8182.com|www.3423500.com|pj88688|vns7034com|wwwb21333com|www.71100.com|WWW.ANQU98.COM|www.k3941.com|www.xpj6935.com|hg5049.com|www2949ccom|zs0.cc|www.25ybyb.com|wwwspj62com|79337|wwwlswjs8com|www.hk7676.com|.miy677com|www.klcp099.com|bet4114com|887550com|wwwj00022com|xsj607|2222ac.co|ganbiaoav.com|www.7969.com|1213xx.com|141765.com|www.615568.com|www.hg0051.com|wwwb765vipcom|mg9176.com|wwwbbdtw|xiongmao66. com|wu521|javlibrary最新地址|www.yh668.top|www.3357. con|www.nsb288.com|www.483876.com|wwwhg9211com|www00666com|wwwqksappcom|www.3344388.com|www.b508.com|boma678.com|www.7006xx.com|da3377.com|www.6266999.com|WWW.39224.COM|www.6175.com|rolex0077.com|hg00028.com|www.j8385.com|wwwwww|43489.com|www.3444kkk.com|www.x1360.com|www.ssss8085.com|WWW.TTN06.COM|www68rncom|www.hg4519.com|2061306.com|847289410@qq.com|www. 610hu. com|www.dwj12.com|wwww.7777.com|365.bm990.com|9927001|vns4658com|www.wz333.cc|https//64222www|www.333143.com|