当前位置:首页 >> 高二数学 >>

高二数学新课标人教A版选修1-1同步课件:1.1.2《四种命题》1.1.3《四种命题间的相互关系》(共22张ppt)_图文

1.1 命题及其关系
1.1.2 四种命题 1.1.3 四种命题间的相互关系

本课件以一个关于毛驴的故事为背景提炼出三个 命题,引出四种命题的定义 . 以学生自主探究为主, 探讨四种命题的组成,每个命题的条件与结论之间的 关系以及它们之间的联系。通过例 1探讨四种命题的 相互转化,通过例2探讨四种命题的真假关系。 本节课内容较为简单,在教学中可以贯穿教学的 连贯性,同时多借助实例等激发学生学习的积极性。

下面是一个关于毛驴的故事: 甲丢失一头跛腿毛驴,四处寻找,恰好看见乙牵着 一头跛腿毛驴经过,甲上前对乙说:“这是我的毛驴, 请还给我.”乙说:“这明明是我的毛驴,怎么会是你 的呢?”甲说:“我的毛驴是跛腿的,你牵的毛驴若没 请同学们想想这三个 有跛腿,就不是我的 .但你牵的毛驴跛了腿,当然是我 命题之间有什么样的 的.” 关系呢? “从上述两人的对话中,你能判断出毛驴的主人是谁 吗?” 先从甲、乙的对话中提炼出如下三个命题: (1)甲的毛驴是跛腿的; (2)没有跛腿的毛驴不是甲的; (3)跛腿的毛驴是甲的.

1
目 标

四种命题

2 3

四种命题的关系

四种命题的真假判断

请将命题“正弦函数是周期函数” 改写成“若p,则q”的形式.

若f ( x )是正弦函数,则f ( x )是周期函数.

条件

结论

四种命题:
(1)若 f ( x)是正弦函数,则 f ( x)是周期函数.

(2)若f ( x )是周期函数,则f ( x )是正弦函数.

(3)若 f ( x )不是正弦函数,则 f ( x )不是周期函数.
(4)若f ( x )不是周期函数,则f ( x )不是正弦函数.

思考:上面四个命题中,命题(1)与 命题(2)(3)(4)的条件和结论之 间分别有什么关系?

(I)观察命题(1)与命题(2)的条件和结论之间分别有什么关系? (1)若f(x)是正弦函数,

p (2)若f(x)是周期函数, q

则f(x)是周期函数; 则f(x)是正弦函数;

q p

一个命题的条件和结论分别是另一个命题的结论和条件,这两个命 题叫做互逆命题.(即条件和结论互换) 我们称(1)和(2)互为逆命题。 或者(2)是(1)的逆命题;这时(1)为原命题。

即 原命题:若p,则q

逆命题:若q,则p

例如,命题“同位角相等,两直线平行”的逆命题是 “两直线平行,同位角相等”.

(II)观察命题(1)与命题(3)的条件和结论之间分别有什么关系? (1)若f(x)是正弦函数,p (3)若f(x)不是正弦函数, ┐ 则f(x)是周期函数;

q
┐q

p

则f(x)不是周期函数.

一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否 定,这两个命题叫做互否命题.(即条件和结论同时否定) 我们称(1)和(3)互为否命题。 或者(3)是(1)的否命题;这时(1)为原命题。



原命题:若p,则q

否命题:若┐p,则┐q

例如,命题“同位角相等,两直线平行”的否命 题是“同位角不相等,两直线不平行”.

(III)观察命题(1)与命题(4)的条件和结论之间分别有什么关系? (1)若f(x)是正弦函数, p 则f(x)是周期函数; (4)若f(x)不是周期函数, ┐ 则f(x)不是正弦函数.

q
┐p

q

一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否 定,这两个命题叫做互为逆否命题.(即条件和结论同时否定且互换) 我们称(1)和(3)互为逆否命题。 或者(3)是(1)的逆否命题;这时(1)为原命题。



原命题: 若p, 则q

逆否命题: 若┐q, 则┐p

例如,命题“同位角相等,两直线平行”的逆否命题 是“两直线不平行,同位角不相等”.

三个概念
1. 互逆命题: 一般地,对于两个命题,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做 互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.

2. 互否命题: 对于两个命题,其中一个命题的条件和结论恰好是另
一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做 互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命 题的否命题. 3. 互为逆否命题: 对于两个命题,其中一个命题的条件和结论恰好

是另一个命题的结论的否定和条件的否定,我们把这样的两个命题
叫做互为逆否命题 .如果把其中的一个命题叫做原命题,那么另一个 叫做原命题的逆否命题.

典例展示
例1.写出下列命题的逆命题、否命题与逆否命题.

(1)若k>0,则方程x2+2x-k=0有实根;
逆命题:若方程x2+2x-k=0有实根,则k>0. 否命题:若k≤ 0,则方程x2+2x-k=0没有实根.

逆否命题:若方程x2+2x-k=0没有实根,则k≤0.

(2)四条边都相等的四边形是正方形.

原命题改写为:若四边形的四条边都相等,则它是正方形. 逆命题:若四边形是正方形,则它的四条边都相等. 否命题:若四边形的四条边不都相等,则它不是正方形. 逆否命题:若四边形不是正方形,则它的四条边不全相等.

四种命题的真假关系
(1)原命题为真,则其逆否命题一定为真。但其逆命题、 否命题不一定为真。 (2)若其逆命题为真,则其否命题一定为真。但其原命题、 逆否命题不一定为真。

即:原命题与逆否命题的真假是等价的。 逆命题与否命题的真假是等价的。

在同一个命题的四种命题中,真命题的个数是多少?

0个

2个

4个

四种命题的关系:
原命题
若p则q 互否 互逆 逆命题 若q则p 互否 逆否 互逆 q

互为

否命题
若 p则

逆否命题
若 q则 p

例2

若m≤0或n≤0,则m+n≤0.写出其逆命题、

否命题、逆否命题,并分别指出其真假.

分析:搞清四种命题的定义及其关系,注意“且” “或”
的否定为“或” “且”.

解:逆命题:若m+n≤0,则m≤0或n≤0.
否命题:若m>0且n>0, 逆否命题:若m+n>0, 则m+n>0. 则m>0且n>0.

(真)

(真) (假)

小结:在判断四种命题的真假时,只需判断两种命题 的真假.因为逆命题与否命题真假等价,逆否命题与原 命题真假等价.

写出下列四组命题的逆命题、否命题及逆否命题,并 判断四种命题的真假.

(1 )原 命 题 : 若 a ? b , 则 a ? c ? b ? c

逆 命 题 : 若 a ? c ? b ? c, 则 a ? b

否 命 题 : 若 a ? b, 则 a ? c ? b ? c
逆 否 命 题 : 若 a ? c ? b ? c, 则 a ? b
( 2 )原 命 题 : 若 x 2 ? 3 x ? 2 ? 0, 则 x ? 2

真 真 真 真 假 真 真 假

逆 命 题 : 若 x ? 2, 则 x 2 ? 3 x ? 2 ? 0

否 命 题 : 若 x 2 ? 3 x ? 2 ? 0, 则 x ? 2
逆 否 命 题 : 若 x ? 2, 则 x 2 ? 3 x ? 2 ? 0

例3. 证明:若x2+y2=0,则x=y=0.
证明:若x,y中至少有一个不为0,不妨设x≠0,则 x2>0,所以x2+y2 >0, 也就是说x2+y2 ≠0. 因此,原命题的逆否命题为真命题,从而原命题

为真命题. 【提升】因为原命题和它的逆否命题有相同的真假性,所以
当直接证明某一命题为真命题有困难时,可以通过证明它的 逆否命题为真命题,来间接证明原命题为真命题.

1.判断下列说法是否正确: (1)一个命题的逆命题为真,它的逆否命题不一定为真.

正确
(2)一个命题的否命题为真,它的逆命题一定为真.

正确

2.如果一个命题的逆命题为假命题,则它的否命 题( A ) A. 一定是假命题 C. 一定是真命题 B. 不一定是假命题 D. 有可能是真命题

3.判断命题“若x- 2 不是有理数,则x不是无理数”

的真假.
逆否命题:若x是无理数,则x- 2 是有理数. “假命题”

通过这节课的学习,你学到了哪些知识呢?
1.四种命题的概念及其形式:
原命题: 若p,则q. 逆命题:若q,则p. 否命题:若?p,则?q. 逆否命题:若?q,则?p.

2.四种命题的真假
(1)两个命题互为逆否命题,他们有相同的真假性;
(2)两个命题为互逆命题或互否命题,他们的真假性没有关系; (3)原命题与它的逆否命题等价;否命题与逆命题等价.

课后练习

课后习题


相关文章:
高二数学新课标人教A版选修1-1同步课件:1.1.2《四种命....ppt
高二数学新课标人教A版选修1-1同步课件:1.1.2《四种命题》1.1.3《四种命题间的相互关系》(共22张ppt)_高二数学_数学_高中教育_教育专区。1.1 命题及其关系...
高中数学新课标人教A版选修1-1《1.1.2四种命题》课件_图文.ppt
高中数学新课标人教A版选修1-1《1.1.2四种命题》课件_数学_高中教育_教育专区。高中数学新课标人教A版选修1-1《1.1.2四种命题》课件 ...
人教新课标版(A)高二选修1-1 1.1.2四种命题同步练习题.doc
人教新课标版(A)高二选修 1-1 1.1.2 四种命题同步练习题 【基础演练】 题型一:四种命题的概念及表示形式 一般的, 用 p 和 q 分别表示原命题的条件和结论...
2017年高中数学人教A版选修1-1课件:1.1.2+1.1.3+四种命....ppt
2017年高中数学人教A版选修1-1课件:1.1.2+1.1.3+四种命题+四种命题间的相互关系_数学_高中教育_教育专区。高中数学必修,PPT,PPT课件,数学练习说课稿,备课...
高中数学人教版A版选修1-1课件:1.1.2 四种命题-1.1.3 ....ppt
高中数学人教A版选修1-1课件:1.1.2 四种命题-1.1.3 四种命题间的相互关系_数学_高中教育_教育专区。第一章 § 1.1 命题及其关系 1.1.2 四种命题 1...
...选修1-1课件1.1.2~1.1.3四种命题四种命题间的相....ppt
人教A版高中数学选修1-1课件1.1.2~1.1.3四种命题四种命题间的相互关系_数学_高中教育_教育专区。高中数学课件灿若寒星整理制作 1.1.2 四种命题 1.1....
...学年高二数学人教A版选修1-1课件:1.1.2-1.1.3 四种....ppt
【测控设计】2015-2016学年高二数学人教A版选修1-1课件:1.1.2-1.1.3 四种命题 四种命题间的相互关系_高中教育_教育专区。1.1.2 四种命题 1.1.3 四种...
...学年高中新课标数学人教A版选修1-1课件:1.1 命题及....ppt
2017-2018学年高中新课标数学人教A版选修1-1课件:1.1 命题及其关系1.2_数学_高中教育_教育专区。 目标导航 1.了解四种命题的概念. 2.认识四种命题的结构,会...
高中新课程数学(新课标人教A版)选修2-1《1.1.2 四种命....ppt
高中新课程数学(新课标人教A版)选修2-1《1.1.2 四种命题》课件_数学_高中教育_教育专区。1.1.2 四种命题 1.1.3 【课标要求】 四种命题间的相互关系 1....
...》高二数学(人教A版)选修1-1课件:1-1-2 四种命题及....ppt
2014《成才之路》高二数学(人教A版)选修1-1课件:1-1-2 四种命题及其相互关系...三种命题. 能利用四种命题间的相互关系判断命题的真假. 第1.12课时...
...高二数学新人教A版选修1-1课件:第1章 1.1.2-1.1.3_....ppt
2018-2019学年高二数学新人教A版选修1-1课件:第1章 1.1.2-1.1.3_数学_...第一章 §1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互...
【同步课件】高中数学人教A版选修2-1课件:1-1-1 命题:1....ppt
同步课件】高中数学人教A版选修2-1课件:1-1-1 命题:1-1-2、3 四种命题...第一章 常用逻辑用语 1.1.2 四种命题 1.1.3 四种命题间的相互关系 目标了...
2018版高中数学人教A版选修2-1课件:1-1-2-1-1-3 四种命....ppt
2018版高中数学人教A版选修2-1课件:1-1-2-1-1-3 四种命题 四种命题间的相互关系_幼儿读物_幼儿教育_教育专区。2018 1.1.2 四种命题 1.1.3 四种命题间...
...选修1-1数学:1.1《四种命题间的相互关系》ppt课件.ppt
2015年秋新人教A版高中选修1-1数学:1.1《四种命题间的相互关系ppt课件_数学_高中教育_教育专区。一、温故知新 1、命题的含义 一、温故知新 1、命题的含义...
人教新课标版(A)高二选修1-1 1.1.3四种命题的关系及判....doc
人教新课标版(A)高二选修 1-1 1.1.3 四种命题的关系及判断同步练习题 【基础演练】 题型一:四种命题间的相互关系 原命题、逆命题、否命题、逆否命题间有如...
最新高中数学人教a版选修(2-1)1-1-2.3《四种命题与四种....ppt
最新高中数学人教a版选修(2-1)1-1-2.3《四种命题四种命题间的相互关系》ppt课件_数学_高中教育_教育专区。第一章 常用逻辑用语 1.1.2 四种命题 1.1.3...
人教版高中数学选修1-1教案:1.1.2四种命题 1.1.3四种命....doc
人教版高中数学选修1-1教案:1.1.2四种命题 1.1.3四种命题间的相互关系_初中教育_教育专区。长丰县实验高中 2016 ~2017 学年第一学期高二年级数学(文科) 集体...
【人教A版】选修1-1数学:1.1《四种命题间的相互关系》p....ppt
人教A版选修1-1数学:1.1《四种命题间的相互关系ppt课件_数学_高中
【数学】1.1.2《四种命题》1.1.3《四种命题的相互关系....ppt
数学1.1.2《四种命题》1.1.3《四种命题的相互关系》课件(人教A版选修1-1)_数学_高中教育_教育专区。 思考、分析 思考 1:下列四个命题中,命题(1)与...
《1.1.3 四种命题间的相互关系》课件1-优质公开课-人教....ppt
《1.1.3 四种命题间的相互关系》课件1-优质公开课-人教A版选修2-1精品_高二数学_数学_高中教育_教育专区。1.1.2四种命题 1.1.3四种命题间的相互关系...