当前位置:首页 >> 数学 >>

高中数学选修4-2:2.1.2 二阶矩阵与平面列向量的乘法正式版

2.1.2 二阶矩阵与平面列向量的乘法

学习目标 ⑴通过具体的例子,理解并掌握二阶方阵左乘二维列向量的运算;理解二阶方阵左乘二
维列向量就是把该向量变成另外一个向量. ⑵理解矩阵对应着向量集合到向量集合的映射.
活动方案 活动一 问题情境 建构数学
一、情境设置 下表是本次校运会高二年级部分班级获得名次的统计(单位:人次)。

第一名 第二名 第三名 第四名 第五名 第六名

高二 1 班

3

1

1

3

4

1

高二 2 班

1

4

5

5

2

3

高二 3 班

2

3

2

4

1

2

高二 4 班

3

2

3

2

4

1

⑴你能计算出各班团体总分吗?(第一到第六名的分值依次为 7、5、4、3、2、1) 学生活动 ●你能将以上的表格及运算过程用矩形的数表来表达吗?

?7?

?3 ??1 ?2 ??3

1 4 3 2

1 5 2 3

3 5 4 2

4 2 1 4

1? 3?? 2? 1??

??5?? ?4? ??3?? ?2? ??

?48? = ??69??
?53? ??58??

??1??

⑵你能分别算出高二(3)、(4)班第一名、第二名共为本班得多少分吗?

?2 ??3

3? 2??

?7? ??5??

=

?29?

? ?

31??

⑶如果已知高二(3)、(4)班第一名、第二名的人次,即

?2 ??3

能算出第一、二名分别记分多少吗?

3? 2??

,为本班得分

?22? ??23??

,你

设第一、二名的得分分别为

x、y,则

?2x ??3x

? ?

3 2

y y

? ?

22 23

(*),得

? ? ?

x y

? ?

5 4



这个过程可以表示为:

?2 ??3

3? 2??

?x?

? ?

y??

=

?22? ??23??

二、建构数学

一般地,我们规定行矩阵 ?a11

a12 ?

与列矩阵

?b11 ??b12

? ? ?

的乘法法则为

? ? ? ? a11

a12

?b11 ??b21

? ? ?

?

a11 ? b11 ? a12 ? b21

二阶矩阵

?a11 ??a21

a12 a22

? ? ?

与列向量

? ? ?

x0 y0

? ? ?

的乘法法则为

?a11 ??a21

a12 a22

??x0

? ?

? ?

y0

? ? ?

?

?a11 ??a21

? ?

x0 x0

? ?

a12 ? y0 a22 ? y0

? ? ?



一般地,对于平面上的任意一个点(向量)(x,y),若按照对应法则 T,总能对应唯一的一 个平面点(向量)(x′,y′),则称 T 为一个变换,简记为
T:(x,y)→(x′,y′), 或

?x? ?x' ?

T

:

? ?

y??

?

? ??

y

'

? ??

一般地,对于平面向量的变换 T,如果变换法则为

T

:

?x?

? ?

y??

?

?x'

? ??

y

'

? ? ??

?

?ax ??cx

? ?

by? dy ??



那么,根据二阶矩阵与列向量的乘法法则可以改写为

?x? ?x' ? ?a

T

:

? ?

y??

?

? ??

y'

? ??

?

??c

b??x?

d

? ?

? ?

y??

由矩阵 M 确定的变换 T,通常记为TM .根据变换的定义,它是平面内点集到其自身的一

个映射.当α



?x?

? ?

y??

表示平面图形

F

上的任意点时,这些点就组成了图形

F,它在 TM

的作用下,

将得到一个新图形 F′——原象集 F 的象集 F′.

活动二二阶矩阵与平面列向量的乘法的简单应用



1

:计算(1)

?1 ??0

2? ? 1??

?3? ??1??

;(2)

?1 ??0

2 ? ?1? ?1?? ??3??



例2

:若

?1 ??1

0? 2??

?x?

? ?

y ??

=

?? 1?

? ?

1

? ?

,求

? ? ?

x? y ??



3⑴已知变换

?x?

? ?

y??

?

?x' ? ?? y '

? ? ??

?

?1 ??3

4? ? x ? 2???? y??

,试将它写成坐标变换的形式;

⑵已知变换

?x?

? ?

y??

?

?x' ? ?? y '

? ? ??

?

?x

? ?

y

?

3y? ? ?

,试将它写成矩阵乘法的形式.

活动三 课堂小结
⑴二阶方阵 A 左乘 2? 1 矩阵 X 的方法; 二阶方阵 A 和 2? 1 矩阵 X、左乘的结果三者知二
求一(知 X、B 求 A 时,A 不唯一); ⑵二元一次方程组可以写出其矩阵形式;
⑶二阶方阵左乘 2? 1 矩阵的过程可以看作一个映射;

?3 1. ??-1

2? 1??

?2?

??1

? ?

的结果是

活动三 课堂反馈单

2.已知变换

? ? ?

x? y??

?

? x? ? ??y???

?

?3 ??0

1? 2??

? ? ?

x? y??

,将它写成坐标变换的形式是

3.

计算

?1 ??2

3? 5??

??1?

??2

? ?

,并解释计算结果的几何意义。

4.已知

? ? ?

x? y??

?

? ? ?

x? ? y???

?

?2x ? 3y ??x ? y

? ? ?

,将它写成矩阵的乘法形式是

2.1.2 二阶矩阵与平面列向量的乘法作业

?3 5? ?2 ?

1. ??1

2

? ?

???1?? =

2.点

A(3,4)在矩阵

?1 ??0

0? 2??

对应的变换作用下得到的点坐标为

3.设

A

?

?3 ??-1

2? 1??

,点

P

经过矩阵

A

变换后得到点(5,5),.若

P

(x,

y)

,则

x

?

y

?

4.计算

?1 ??0

1 ? ?x?

2??

? ?

y??

?

5.若△ABC

的顶点

A(1, ?1),

B(0,1), C(2, 0)

,经

?1 ??3

2? 4??

变换后,新图形的面积为

??2?

6. A ??1

? ?

?

??2? ???1??

,

A

?3?

??1

? ?

?

?3? ??9??

,求

A

7.请用矩阵表示二元一次方程组

??? aa1211xx

? ?

a12 y a22 y

? ?

b1 b2

8.求矩阵 A,使点 A(0,3),B(-3,0)在矩阵 A 对应的变换作用下分别得到点 A?(1,1), B?(?1, 2) 。

学习不是一朝一夕的事情,需要平时积累,需要平时的勤学苦练。有个故事:古希腊大哲学家苏格拉底在开学第一天对他的学生们说:“今天你们只学一件最简单也是最容易的事儿。每人把胳膊尽 量往前甩,然后再尽量往后甩。”说着,苏格拉底示范做了一遍,“从今天开始,每天做 300 下,大家能做到吗?”学生们都笑了,这么简单的事,有什么做不到的?过了一个月,苏格拉底问学生: 每天甩手 300 下,哪个同学坚持了,有 90%的学生骄傲的举起了手,又过了一个月,苏格拉底又问,这回,坚持下来的学生只剩下了 80%。一年过后,苏格拉底再一次问大家:“请告诉我,最简 单的甩手运动。还有哪几个同学坚持了?”这时,整个教室里,只有一个人举起了手,这个学生就是后来成为古希腊另一位大哲学家的柏拉图。同学们,柏拉图之所以能成为大哲学家,其中一个

重要原因,就是,柏拉图有一种持之以恒的优秀品质。要想成就一番事业,必须有持之以恒的精神,大家都熟悉愚公移山的故事,愚公之所以能够感动天帝,移走太行、王屋二山。正是因为他具 有锲而不舍的精神。戎马一生,他前十次革命均告失败,但他百折不挠,终于在第十一次革命的时候,推翻了清王朝的统治,建立了中华民国。这些故事,情节不同,但意义都是一样的,它告诉 无们,做事要有恒心。旬子讲:“锲而不舍,朽木不折;锲而舍之,金石可镂。”这句话充分说明了一个人如果有恒心,一些困难的事情便可以做到,没有恒心,再简单的事也做不成。学习是一条 慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯。所以我说:学习贵在坚持! 当下市面上关于教授学习方法的书籍不少,其所载内容也的确 很有道理,然而当读者实际应用时,很多看似实用的方法用来效果却并不明显,之后的结果无非是两种:要么认为自己没有掌握其精髓要领,要么抱怨那本书的华而不实,但最终肯定还是会回归 到当初的原点。这本《学会学习》在一开始并没有急于兜售自己的方法,而是通过测试让读者真正了解自己,从而找到适合自己思维方式的学习方法,书的第一部分就是左脑还是右脑思维测试和 视觉、听觉和动觉学习模式测试,经过有效分类后,针对不同读者对不同思考和接收接受学习的特点,有针对性的分别给出建议,从而不断强化自己的优势。在其后书中的所有介绍具体学习方法 章节的最开始,都是按照不同学习模式给出各种学习方法不同的建议,这是此书区别于其他学习方法类书籍的最大特点,这种“因材施教”的方式能让读者有种豁然开朗的感觉,除了能够得到最 适合自己的有效的学习方法也能更深入的认识客观的自己,不论对学习还是生活都有帮助。除了“针对性”强外,本书第二大特点就是“全面”,全书都是由一篇篇短文、图表集成,更像是一本博 文或者 PPT 课件合集,每个学习方法的题目清晰明了十分便于查找,但也因此有些章节内容安排的比较混乱,所幸每一章节关联性并不太强,每个章节都适合独立检索来阅读学习。其内容从“时 间规划”、“笔记”“阅读”直到“考试”几乎涉及了所有学习中的常遇问题,文中文字精炼没有过分的渲染,完全是纯纯的“干货”,可以设身处地的想象:当自己面对学海之中手足无措之时,长 篇大论的方法肯定会无心查看,明了的编排,让人从目录中就能一目了然的找到自己想要的,一篇篇短文尽可能在最少的时间让读者得到最有用的信息,是一部值得学习的人们不断自我提高的有 力武器。曾经看到一个有意思的心理测试:用“正确的方法”、“错误的方法”和“积极的行为”、“消极的行为”,来自由搭配,看如何搭配出最好和最坏的结果,“正确方法”配合“积极的行为”无 疑是最好的结果,然而我们会很“惯性”想当然的认为,“错误的方法”和“消极的行为”搭配是最坏的结果,其实“错误的方法”加上“积极的行为”才是最坏的结果,这会让人在错误的路上越 走越远,学习也是同理,一味钻牛角尖般的生搬硬套不适合自己的方法不论多努力都只会离成功越来越远,而好的学习方法加上积极的学习态度无疑会让你如虎添翼。这是每个人都需要的,起码 在学生的时候如果遇到,或者人生会少一些遗憾,我只恨我遇见的晚了点,可是现在已是终身学习的年代,错过了最恰当的时候,但只要有心又怎会嫌晚呢?本书归类为学习方法-青年读物,是本 工具书,学习手册,但不能阻止她成为经典。这本书的副标题为“增加学习技能与脑力”,正是本书的宗旨,本书系统化地阐述了学习技能提升的各个方面,可谓事无巨细的令人发指啊。整体来讲 主要包括 7 个方面,分别是学习模式,时间管理和学习技巧规划,笔记记录技巧,阅读技巧,记忆,应试技巧,拾遗。全书的结构采取的是总分的形式,前三个方面是总的部分,算是增加学习技 能的准备,从认识自己的学习模式开始,然后采取任何事都需要的时间管理技巧,再总体地讲一下学习技巧规划的事项。然后底下是分的部分,将学习的包含的各个方面的技巧进行分开阐述,分 别有笔记记录,阅读,记忆,应试以及最后的拾遗。系统地讲述了学习的几乎所有方面。让读到她的人如果实践的话不仅能在学习上得到提高,在脑力上或者说理解力上肯定会受益匪浅。在此, 说句题外话,我一直觉得日本人写书在细节上做的是无与伦比的,但是这本书让我对这个看法有了一定的动摇,因为她里面的讲述部分让我觉得美国是个应试教育的国家吗,简直比我们中国还要 应试。那个考试应对细节的部分放在中国,一点也没有违和感的,好吗?所以他们能出现这样的情况,从没到过日本的人能够写出描写日本人的书,然后让日本人都觉得是经典的,没有在企业里 做过实务管理的德鲁克能成为管理上的大师,其理念影响了全世界……不得不说,美国的教育真不是盖的。细节上,我印象比较深的是,作者开篇开始传授如何应该认识自己的学习模式,运用了 一些测试题目,然后根据结果找出与自己最近似的学习模式,她把学习模式分为几种情况,分别有左脑型,右脑型,还有另外的分法,为视觉的,听觉的,动作的。我看了一下,确实有跟自己近 的类型,我就是视觉的,对号入座后就可以比较直接的去扬长避短了。然后,作者说了,做任何事情,时间管理技巧都是不可缺少的,她不仅教导的是学习的技能,还有很多其他的道理,对我们 人生都是有益的,我相信,如果我们的孩子从小就学习这些,将会受用终生。还有,作者提到了学习技巧规划里的家庭档案系统,将我们现在工作中的管理引进了学习中,这是一个非常好的学习 习惯,如果孩子持续的做,严格地做,获得的收益将无法估量,因为,这在我们现在工作中都必须要用的管理信息的技能,实在是太可贵了,孩子将这种技能与阅读结合起来,保管好自己思维历 程,可以获得持续的提高,直到最后展翅翱翔,他最可贵的是,可以系统地提升自己,从而达到书中简介里提到的那样,碰到不会的领域的时候,可以很快的用这些方法,工具建立起模型,系统, 游刃有余地攻克自己之前没接触的领域,提升自己的理解力,我想这正是我们学习的比较重要的一个目的吧。最后,我影响比较深的就是作者提供的那些小工具了,包括笔记的表格,辅助记忆的 表格,帮助整理文档的夹子,应对考试的技巧,缓解紧张的方法……我觉得全书对于如何增加学习技能和脑力的讲述是有道理的,我也相信通过实践作者在书上所提到的方法,定能在学习中得到 提高。但是,那也不是一朝一夕的事情,就像我们大家都知道的那个故事,在美国得到诺贝尔奖的科学家说,自己得奖最大的原因都是在幼儿园里学习的最基本的道理,就是说要和郭靖一样,不 要贪多吃不烂,认定他就要好好地坚持去做,不要停。我自己喜欢的是家庭归档系统,虽然不是学习过程中的技能,只属于学习准备的东西,但是如果坚持井井有条的那样整理自己的学习思维, 对自己的收益将难以估量。稍显不足的地方是,第一,本书的语言太过精练,感觉就像没有主观感情一样,要命的是有很多词语或者概念读的时候甚至不知道什么意思,书中也没做讲解,本来就 看的比较费力,现在好了,作者也不等你,直接把你撂那。第二,作者很多地方就像立一个提纲一样,直接让你自己去参考多少多少页,这个太不习惯了。第三,作者在书中提到各种学习的类型, 但是并没有就这种类型合适他们的学习方法做开展或者介绍,比如,将学习分为好几种类型的那个部分,有内省的,有外联的之类,然而并没有对各种类型进行针对性的指导。从而她的有些观点 就不太适用,像成立学习小组的,这个对于内向的人,在我国这样的学习环境中是比较的困难,但作者没有就如何做提出建议,只是告诉读者这么做,会显得不够全面或者落空。