当前位置:首页 >> 数学 >>

斜边垂直的直角三角形相似


正方形 ABCD 的顶点 A 在直线 MN 上,点 O 是对角线 AC、 BD 的交点,过点 O 作 OE ⊥MN 于点 E,过点 B 作 BF⊥MN 于点 F. 如图 6-1,当 O、 B 两点均在直线 MN 上方时,易得 AF+BF=2OE 那么当正方形 ABCD 绕点 A 顺时针旋转至图 2、图 3 的位置是,线段 AF、BE、OE 之间又有怎样的关系? 请直接写出你的猜想,并选择一种情况给予证明

(2013?莆田) 在 Rt△ABC, ∠C=90°, D 为 AB 边上一点, 点 M、 N 分别在 BC、 AC 边上, 且 DM⊥DN. 作 MF⊥AB 于点 F,NE⊥AB 于点 E. (1)特殊验证:如图 1,若 AC=BC,且 D 为 AB 中点,求证:DM=DN,AE=DF; (2)拓展探究:若 AC≠BC. ①如图 2,若 D 为 AB 中点, (1)中的两个结论有一个仍成立,请指出并加以证明; ②如图 3,若 BD=kAD,条件中“点 M 在 BC 边上”改为“点 M 在线段 CB 的延长线上” ,其它条件不变, 请探究 AE 与 DF 的数量关系并加以证明.

(2013?杭州)如图,已知正方形 ABCD 的边长为 4,对称中心 为点 P,点 F 为 BC 边上一个动点,点 E 在 AB 边上,且满足条件∠EPF=45° ,图中两块阴 影部分图形关于直线 AC 成轴对称,设它们的面积和为 S1. (1)求证:∠APE=∠CFP; (2)设四边形 CMPF 的面积为 S2,CF=x,y = S1 S2 . ①求 y 关于 x 的函数解析式和自变量 x 的取值范围,并求出 y 的最大值; ②当图中两块阴影部分图形关于点 P 成中心对称时,求 y 的值.

如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC=∠EDF=90° ,△DEF 的 顶点 E 与△ABC 的斜边 BC 的中点重合.将△DEF 绕点 E 旋转,旋转过程中,线段 DE 与线段 AB 相交于点 P,线段 EF 与射线 CA 相交于点 Q. (1)如图①,当点 Q 在线段 AC 上,且 AP=AQ 时,求证:△BPE≌△CQE; (2)如图②,当点 Q 在线段 CA 的延长线上时,求证:△BPE∽△CEQ;并求当 BP=a,CQ=9/2 a 时,P、Q 两点间的距离 (用含 a 的代数式表示) .

(2014?相城区一模)如图,在平面直角坐标系中,点 C 的坐标为(0,4),A 是 x 轴上的一个动点,M 是线段 AC 的中点.把线段 AM 进行以 A 为旋转中心、向顺时 针方向旋转 90° 的旋转变换得到 AB.过 B 作 x 轴的垂线、过点 C 作 y 轴的垂线, 两直线交于点 D,直线 DB 交 x 轴于一点 E.设 A 点的横坐标为 t, (1)若 t=3,则点 B 的坐标为______,若 t=-3,则点 B 的坐标为______; (2)若 t>0,△BCD 的面积为 S,则 t 为何值时,S=6? (3)是否存在 t,使得以 B、C、D 为顶点的三角形与△AOC 相似?若存在,求此

时 t 的值;若不存在,请说明理由.

飞翔 0110 数学 2014-12-01

如图,在平面直角坐标系中,点 C 的坐标为(0,4),动点 A 以每秒 1 个单位长的速度, 从点 O 出发沿 x 轴的正方向运动,M 是线段 AC 的中点.将线段 AM 以点 A 为中心, 沿顺时针方向旋转 90° ,得到线段 AB. 过点 B 作 x 轴的垂线,垂足为 E,过点 C 作 y 轴 的垂线,交直线 BE 于点 D.运动时间为 t 秒. (1)当点 B 与点 D 重合时,求 t 的值; (2)设△BCD 的面积为 S,当 t 为何值时,S=25/4? (3)连接 MB,当 MB∥OA 时,如果抛物线 y=ax2-10ax 的顶点在△ABM 内部(不包 括边),求 a 的取值范围.

(2012?烟台) (1)问题探究 如图 1,分别以△ABC 的边 AC 与边 BC 为边,向△ABC 外作正方形 ACD1E1 和正方形 BCD2E2,过点 C 作 直线 KH 交直线 AB 于点 H,使∠AHK=∠ACD1 作 D1M⊥KH,D2N⊥KH,垂足分别为点 M,N.试探究 线段 D1M 与线段 D2N 的数量关系,并加以证明. (2)拓展延伸 ①如图 2,若将“问题探究”中的正方形改为正三角形,过点 C 作直线 K1H1,K2H2,分别交直线 AB 于 点 H 1, H 2, 使∠AH1K1=∠BH2K2=∠ACD1. 作 D1M⊥K1H1, D2N⊥K2H2, 垂足分别为点 M, N. D1M=D2N 是否仍成立?若成立,给出证明;若不成立,说明理由. ②如图 3,若将①中的“正三角形”改为“正五边形” ,其他条件不变.D1M=D2N 是否仍成立?(要求: 在 图 3 中 补 全 图 形 , 注 明 字 母 , 直 接 写 出 结 论 , 不 需 证 明 )

如图,梯形 ABCD 中,AD‖BC,∠ABC=2∠BCD=2α,点 E 在 AD 上,点 F 在 DC 上,且∠BEF=∠A.(1)∠BEF= (用含 α 的代数 式表示) ; (2)当 AB=AD 时,猜想线段 EB、EF 的数量关系,并证 明你的猜想; (3)当 AB≠AD 时,将“点 E
如图,梯形 ABCD 中,AD‖BC,∠ABC=2∠BCD=2α,点 E 在 AD 上,点 F 在 DC 上,且 ∠BEF=∠A.

(1)∠BEF=

(用含 α 的代数式表示) ; (2)当 AB=AD 时,猜想线段 EB、EF 的数量关系,并证明你的猜想; ( 3)当 AB≠AD 时, 将“点 E 在 AD 上 ” 改为“点 E 在 AD 的延长线上, 且 AE > AB,AB=mDE,AD=nDE”,其他条件不变(如图),求 EB/EF 的值(用含 m,n 的代数式表示)


相关文章:
斜边垂直的直角三角形相似_图文.doc
斜边垂直的直角三角形相似 - 正方形 ABCD 的顶点 A 在直线 MN 上,点
相似直角三角形判定_图文.ppt
相似直角三角形判定 - 相似直角三角形判定 复习巩固 到目前为止我们总共学过几种判定两 个三角形相似的方法? 答:(1)两角对应相等的两个三角形相似。(2)两边...
直角三角形相似判定.doc
与另一个直角三角形的斜边和一条直角边对应 成比例,那么这两个直角三角形相似...保持 AM 和 MN 垂直, (1)证明:Rt△ABM∽Rt△MCN; (2)设 BM=x,梯形 ABCN...
相似三角形的判定5(直角三角形)_图文.ppt
相似三角形的判定5(直角三角形) - 朱阳一中 探究“斜边直角边法” 判断满足下列条件的两个三角形是否相似? A A??? 8 4 B (1)∠A=400,∠A?=??400 (...
相似三角形分类整理(超全).doc
(5)两角对应相等的两个三角形相似。 (6)一条直角边和斜边长对应成比例的两...())) 例 2:如图,△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交 AD...
M09A22 相似之直角三角形.doc
M09A22 相似直角三角形 - 第二十二节 【知识要点】 射影定理 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC 中,∠C=90?,则 2 + 2 ...
相似三角形的判定和性质.pdf
直角边与另一个直角三角形的斜边和一条直角边对应 成比例,那么这两个直角三角形相似垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. ...
三角形相似 例题_图文.ppt
三角形相似 例题 - 知识要点 判定三角形相似的定理之四 √ H L 如果一个直角三角形斜边和一条直角 边与另一个直角三角形斜边和一条直角边 对应成比例, ...
27.2.1直角三角形相似判定(庞)_图文.ppt
27.2.1直角三角形相似判定(庞)_数学_初中教育_教育专区。两个直角三角形相似...B 0 A D C △ABC中,∠ BAC是直角,过斜边中点M而垂直斜边BC的直线交...
第5课时 斜边的比等于一组直角边的比的两个直角三角形相似.doc
园丁学校中学部教学案 课题:第 5 课时编拟教师 学生探究栏 斜边的比等于一组直角边的比的两个直角三角形相似学生姓名: 授课教师 授课班级 时间 教师批注栏 题...
九上-24-15-相似三角形判定-斜边直角边_图文.ppt
九上-24-15-相似三角形判定-斜边直角边_初二数学_数学_初中教育_教育专区。相似三角形判定-斜边直角边 1 .会用预备定理证明相似三角形的判定定 理---斜边直角...
M08C23 相似之直角三角形.doc
M08C23 相似直角三角形 - 第二十三节 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC 中,∠C=90?,则 2 射影定理 + 2 ...
第7讲双垂直模型及两等角相似.doc
角中的三角形相似 掌握三垂直模型题的解题方法,及三等角中的三角形相似一、课...坐标为 ;(2)在 轴上是否存在点 D,使得△ACD 是以 AC 为斜边的直角三角形...
直角三角形相似判定_图文.ppt
直角三角形相似判定 - 00:48 三角形全等中对应角相等,对应边相等; 三 判
相似三角形知识点及典型例题.doc
②如果一个直角三角形斜边和一条直角边与另一个直角三角形斜边和一条直角...运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形...
图形的相似复习题(含答案精校版).doc
如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边 对应成比例,那么这两个直角三角形相似垂直法:直角三角形被斜边上的高分成的两...
有关垂直的定理和公式.doc
有关垂直的定理和公式_二年级数学_数学_小学教育_教育专区。初中数学有关垂直和...个直角三角形和原三角形相似 28、定理 如果一个直角三角形斜边和一条直角边...
27.2.1.4直角三角形相似_图文.ppt
27.2.1.4直角三角形相似 - 直角三角形相似 的判定 想一想: 到目前为
直角三角形的所有定律.doc
直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条...三角形 与原三角形相似 91 相似三角形判定定理 1 两角对应相等,两三角形相似(...
相似三角形经典题型_图文.doc
两个直角三角形相似. (3)直角三角形被斜边上的高分成的两个直角三角形与原...“垂直型” (有“双垂直共角型” 、 “双垂直共角共边型(也称“射影定理...
更多相关标签: