当前位置:首页 >> 数学 >>

江西省宜春市高安二中2015-2016学年高一上学期期中数学试卷(平行班) Word版含解析


2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷(平行班)

一、选择题(本题共 12 道小题,每小题 5 分,共 60 分) 1.设集合{A=x|1<x<2},{B=x|x<a},若 A? B,则 a 的取值范围是( A.{a|a≥2} B.{a|a>2} C.{a|a≥1} D.{a|a≤2} )

2.设 f(x)= A.2 B.3 C.9 D.18

,则 f=(

)

3.已知 A=B=R,x∈A,y∈B,f:x→y=ax+b 是从 A 到 B 的映射,若 1 和 8 的原象分别是 3 和 10,则 5 在 f 下的象是( A.3 B.4 C.5 ) D.6

4.设 a=logπ 3,b=2 ,c=log2 ,则(

0.3

)

A.a>b>c B.a>c>b C.c>a>b D.b>a>c

5.若 f(x)是偶函数,其定义域为(﹣∞,+∞) ,且在=1,则 a=( A. B. C.1 D.2

)

7.函数 f(x)=(x﹣a) (x﹣b) (其中 a>b)的图象如图所示,则函数 g(x)=ax+b 的大致 图象是( )

A.

B.

C.

D.

8.定义在 R 上的奇函数 f(x) ,满足 >0 的解集为( A. C. ) B. D.

,且在(0,+∞)上单调递减,则 xf(x)

9.如图(1) 、 (2) 、 (3) 、 (4)为四个几何体的三视图,根据三视图可以判断这四个几何体依 次分别为( )

A.三棱台、三棱柱、圆锥、圆台 B.三棱台、三棱锥、圆锥、圆台 C.三棱柱、正四棱锥、圆锥、圆台 D.三棱柱、三棱台、圆锥、圆台

10.已知函数 f(x)为奇函数,且当 x<0 时,f(x)=2x ﹣1,则 f(1)的值为( A.1 B.﹣1 C.2 D.﹣2

2

)

11.用二分法求函数 f(x)=lgx+x﹣3 的一个零点,根据参考数据,可得函数 f(x)的一个 零点的近似解(精确到 0.1)为( lg2.5625≈0.409) A.2.4 B.2.5 C.2.6 D.2.56 )(参考数据:lg2.5≈0.398,lg2.75≈0.439,

12.函数 y=

的图象可能是(

)

A.

B.

C.

D.

二、填空题(本题共 4 道小题,每小题 5 分,共 20 分) 13.函数 f(x)= __________. 的定义域为

14.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图) , ∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为__________.

15.已知函数 f(x)= k 的取值范围为__________.

,若关于 x 的方程 f(x)=k 有 3 个不同的实根,则实数

16.下面命题: ①幂函数图象不过第四象限; ②y=x 图象是一条直线; ③若函数 y=2x 的定义域是{x|x≤0},则它的值域是{y|y≤1}; ④若函数 的定义域是{x|x>2},则它的值域是 ;
0

⑤若函数 y=x2 的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2}, 其中不正确命题的序号是__________.

三、解答题(本题共 6 道小题,共 70 分) 17.计算下列各式: (1) ;

(2)



18.已知函数 f(x)= <a 或 x>a+1} (1)求 A, (?RA)∩B;

的定义域为集合 A,B={x∈Z|2<x<10},C={x∈R|x

(2)若 A∪C=R,求实数 a 的取值范围.

19.已知函数



(Ⅰ)若 g(x)=f(x)﹣a 为奇函数,求 a 的值; (Ⅱ)试判断 f(x)在(0,+∞)内的单调性,并用定义证明.

20.根据市场调查,某商品在最近的 40 天内的价格 f(t)与时间 t 满足关系 ,销售量 g(t)与时间 t 满足关系 g(t)= ﹣t+50(0≤t≤40,t∈N) ,设商品的日销售额的 F(t) (销售量与价格之积) , (Ⅰ)求商品的日销售额 F(t)的解析式; (Ⅱ)求商品的日销售额 F(t)的最大值.

21.已知函数 f(x)=x2+2ax+2,x∈. (1)求实数 a 的取值范围,使 y=f(x)在区间上是单调函数; (2)若 a≥1,用 g(a)表示函数 y=f(x)的最小值,求 g(a)的解析式.

22.函数

是定义在(﹣1,1)上的奇函数,且



(1)确定函数 f(x)的解析式; (2)试判断 f(x)在(﹣1,1)的单调性,并予以证明; (3)若 f(t﹣1)+f(t)<0,求实数 t 的取值范围.

2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷(平行班)

一、选择题(本题共 12 道小题,每小题 5 分,共 60 分) 1.设集合{A=x|1<x<2},{B=x|x<a},若 A? B,则 a 的取值范围是( A.{a|a≥2} B.{a|a>2} C.{a|a≥1} D.{a|a≤2} 【考点】集合的包含关系判断及应用. 【专题】计算题. 【分析】在数轴上画出图形,结合图形易得 a≥2. 【解答】解:在数轴上画出图形易得 a≥2. )

故选 A.

【点评】本题考查集合的包含关系,解题时要作出图形,结合数轴进行求解.

2.设 f(x)= A.2 B.3 C.9 D.18

,则 f=(

)

【考点】函数的值. 【专题】函数的性质及应用. 【分析】由已知得 f(2)= ,由此能求出 f=f(1)=2e1﹣1=2.

【解答】解:∵f(x)=



∴f(2)= f=f(1)=2e 故选:A.
1﹣1

, =2.

【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合 理运用.

3.已知 A=B=R,x∈A,y∈B,f:x→y=ax+b 是从 A 到 B 的映射,若 1 和 8 的原象分别是 3 和 10,则 5 在 f 下的象是( A.3 B.4 C.5 ) D.6

【考点】映射. 【专题】简易逻辑. 【分析】A=B=R,x∈A,y∈B,f:x→y=ax+b 是从 A 到 B 的映射,1 和 8 的原象分别是 3 和 10, 可以根据象与原像的关系满足 f(x)=ax+b,列出不等式求出 a,b 的值,进而得到答案. 【解答】解:A=B=R,x∈A,y∈B,f:x→y=ax+b 是从 A 到 B 的映射, 又 1 和 8 的原象分别是 3 和 10, ∴ 解得: , ,

即 f:x→y=x﹣2 5 在 f 下的象可得 f(5)=1×5﹣2=3, 故选 A; 【点评】此题主要考查映射的定义及其应用,注意象与原象的对应关系,此题是一道基础题;

4.设 a=logπ 3,b=20.3,c=log2 ,则(

)

A.a>b>c B.a>c>b C.c>a>b D.b>a>c 【考点】对数值大小的比较. 【专题】函数的性质及应用. 【分析】利用指数函数与对数函数的单调性即可得到. 【解答】解:∵0<a=logπ 3<1,b=2 >1,c=log2 <0, ∴c<a<b. 故选:D. 【点评】本题考查了指数函数与对数函数的单调性,属于基础题.
0.3

5.若 f(x)是偶函数,其定义域为(﹣∞,+∞) ,且在

【点评】本题主要考查了函数单调性的应用,以及函数奇偶性的判断,属于基础题

6.已知函数 f(x)=

(a∈R) ,若 f=1,则 a=(

)

A.

B.

C.1

D.2

【考点】分段函数的应用. 【专题】函数的性质及应用. 【分析】根据条件代入计算即可. 【解答】解:∵f=1, ∴f=f(2 ∴ .
﹣(﹣1)

)=f(2)=a?2 =4a=1

2

故选:A. 【点评】本题主要考查了求函数值的问题,关键是分清需要代入到那一个解析式中,属于基 础题.

7.函数 f(x)=(x﹣a) (x﹣b) (其中 a>b)的图象如图所示,则函数 g(x)=a +b 的大致 图象是( )

x

A.

B.

C.

D.

【考点】指数函数的图像变换. 【专题】函数的性质及应用. 【分析】根据一元二次函数的图象确定 a,b 的取值范围,即可得到结论. 【解答】解:由图象可知 0<a<1,b<﹣1, 则 g(x)=a +b 为减函数, g(0)=1+b<0, 则对应的图象为 B,
x

故选:B 【点评】本题主要考查函数的图象识别和判断,利用一元二次函数和指数函数的图象和性质 是解决本题的关键.

8.定义在 R 上的奇函数 f(x) ,满足 >0 的解集为( A. C. ) B. D.

,且在(0,+∞)上单调递减,则 xf(x)

【考点】奇偶性与单调性的综合. 【专题】函数的性质及应用. 【分析】由已知中 f ( )=0,且在(0,+∞)上单调递减,可得 f (﹣ )=0,且在区间(﹣ ∞,0)上单调递减,分类讨论后,可得 xf(x)>0 的解集 【解答】解:∵函数 f(x)是奇函数,在(0,+∞)上单调递减,且 f ( )=0, ∴f (﹣ )=0,且在区间(﹣∞,0)上单调递减, ∵当 x<0,当﹣ <x<0 时,f(x)<0,此时 xf(x)>0 当 x>0,当 0<x< 时,f(x)>0,此时 xf(x)>0 综上 xf(x)>0 的解集为 故选 B 【点评】本题主要考查函数的单调性和奇偶性的综合应用,体现了转化的数学思想,判断出 f (﹣ )=0,且在区间(﹣∞,0)上单调递减是解题的关键.

9.如图(1) 、 (2) 、 (3) 、 (4)为四个几何体的三视图,根据三视图可以判断这四个几何体依 次分别为( )

A.三棱台、三棱柱、圆锥、圆台 B.三棱台、三棱锥、圆锥、圆台 C.三棱柱、正四棱锥、圆锥、圆台 D.三棱柱、三棱台、圆锥、圆台 【考点】简单空间图形的三视图. 【分析】三视图复原,判断 4 个几何体的形状特征,然后确定选项. 【解答】解:如图(1)三视图复原的几何体是放倒的三棱柱; (2)三视图复原的几何体是四棱锥; ( 3)三视图复原的几何体是圆锥; (4)三视图复原的几何体是圆台. 所以(1) (2) (3) (4)的顺序为:三棱柱、正四棱锥、圆锥、圆台. 故选 C. 【点评】本题考查简单几何体的三视图,考查视图能力,是基础题.

10.已知函数 f(x)为奇函数,且当 x<0 时,f(x)=2x2﹣1,则 f(1)的值为( A.1 B.﹣1 C.2 D.﹣2

)

【考点】函数奇偶性的性质. 【专题】函数的性质及应用. 【分析】直接利用函数的奇偶性以及函数的解析式求解即可. 【解答】解:函数 f(x)为奇函数,且当 x<0 时,f(x)=2x2﹣1,

则 f(1)=﹣f(﹣1)=﹣(2×1 ﹣1)=﹣1. 故选:B. 【点评】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.

2

11.用二分法求函数 f(x)=lgx+x﹣3 的一个零点,根据参考数据,可得函数 f(x)的一个 零点的近似解(精确到 0.1)为( lg2.5625≈0.409) A.2.4 B.2.5 C.2.6 D.2.56 【考点】二分法求方程的近似解. 【专题】计算题. 【分析】本题考查的是二分法求方程的近似解的问题.在解答时可以先根据函数的特点和所 给的数据计算相关的函数值,再结合零点存在性定理即可获得解答. 【解答】解:由题意可知:f(2.5)=lg2.5+2.5﹣3=0.398﹣0.5<0, f(2.5625)=lg2.5625+2.5625﹣3=0.409﹣0.4375<0, f(2.75)=lg2.75+2.75﹣3=0.439﹣0.25>0 又因为函数在(0,+∞)上连续,所以函数在区间(2.5625,2.75)上有零点. 故选 C. 【点评】本题考查的是二分法求方程的近似解的问题.在解答的过程当中充分体现了观察分 析数据的能力、问题转化的能力以及运算的能力.值得同学们体会反思. )(参考数据:lg2.5≈0.398,lg2.75≈0.439,

12.函数 y=

的图象可能是(

)

A.

B.

C.

D.

【考点】函数的图象. 【专题】函数的性质及应用. 【分析】当 x>0 时, ,当 x<0 时, ,作出函数图象为 B.

【解答】解:函数 y= 当 x>0 时, 当 x<0 时,

的定义域为(﹣∞,0)∪(0,+∞)关于原点对称. , ,此时函数图象与当 x>0 时函数 的图象关于原点对称.

故选 B 【点评】本题考查了函数奇偶性的概念、判断及性质,考查了分段函数的图象及图象变换的 能力.

二、填空题(本题共 4 道小题,每小题 5 分,共 20 分) 13.函数 f(x)= (﹣2,1]. 【考点】函数的定义域及其求法. 【专题】计算题. 【分析】根据二次根式的定义可知 1﹣x≥0 且根据对数函数定义得 x+2>0,联立求出解集即 可. 【解答】解:因为 f(x)= 函数定义得 x+2>0② 联立①②解得:﹣2<x≤1 故答案为(﹣2,1] 【点评】考查学生理解函数的定义域是指使函数式有意义的自变量 x 的取值范围.会求不等 式的解集. ,根据二次根式定义得 1﹣x≥0①,根据对数 的定义域为

14.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图) , ∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为 2+ .

【考点】平面图形的直观图.

【专题】计算题. 【分析】求出直观图中,DC,BC,S 梯形 ABCD,然后利与用平面图形与直观图形面积的比是 求出平面图形的面积. 【解答】解:DC=ABsin 45°= S 梯形 ABCD= (AD+BC)DC= (2+ S= S 梯形 ABCD=2+ . ,BC=ABsin 45°+AD= ) = + , +1, ,

故答案为:2+ 【点评】本题考查斜二测画法,直观图与平面图形的面积的比例关系的应用,考查计算能力.

15.已知函数 f(x)= k 的取值范围为(1,2].

,若关于 x 的方程 f(x)=k 有 3 个不同的实根,则实数

【考点】函数的零点与方程根的关系. 【专题】作图题;数形结合;数形结合法;函数的性质及应用. 【分析】由题意作函数 f(x)的图象,由图象得到. 【解答】解:作函数 f(x)=f(x)= 的图象如图,

则由图象可知,1<k≤2, 故答案为(1,2]. 【点评】本题考查了分段函数的图象和作法和函数零点与图象的交点的关系,属于基础题.

16.下面命题: ①幂函数图象不过第四象限; ②y=x0 图象是一条直线; ③若函数 y=2 的定义域是{x|x≤0},则它的值域是{y|y≤1}; ④若函数 的定义域是{x|x>2},则它的值域是 ;
x

⑤若函数 y=x2 的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2}, 其中不正确命题的序号是②③④⑤. 【考点】命题的真假判断与应用. 【专题】定义法;函数的性质及应用;简易逻辑. 【分析】根据函数的性质以及函数定义域值域等性质分别进行判断即可. 【解答】解:①幂函数图象不过第四象限,正确; ②y=x 图象是一条直线,错误,函数的定义域为(﹣∞,0)∪(0,+∞) ,函数的图象为两条 射线; ③若函数 y=2 的定义域是{x|x≤0},则它的值域是{y|0<y≤1};错误 ④若函数 的定义域是{x|x>2},则它的值域是{y|0<y< };故错误;
2 x 0

⑤若函数 y=x 的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2},错误,当定义域 为{x|0≤x≤2}时,值域也是{y|0≤y≤4}, 故不正确命题的序号②③④⑤, 故答案为:②③④⑤ 【点评】本题主要考查命题的真假判断,利用函数的性质以及函数定义域,值域,单调性的 性质是解决本题的关键.

三、解答题(本题共 6 道小题,共 70 分) 17.计算下列各式: (1) ;

(2)



【考点】有理数指数幂的化简求值;对数的运算性质. 【专题】计算题. 【分析】 (1)将各项的底数化为幂的形式,利用指数的运算法则求解即可. (2) 将 化为 3 的分数指数幂形式, 将 lg25+lg4 利用对数的运算法则化为 lg100=2,

由对数的意义知为 2,结果可求出. 【解答】解: (1)原式=

=

=

=

(2)原式=

=

= 【点评】本题考查指数和对数的运算法则、根式和分数指数幂的互化、对数恒等式等知识, 考查运算能力.

18.已知函数 f(x)= <a 或 x>a+1} (1)求 A, (?RA)∩B;

的定义域为集合 A,B={x∈Z|2<x<10},C={x∈R|x

(2)若 A∪C=R,求实数 a 的取值范围. 【考点】集合关系中的参数取值问题;交、并、补集的混合运算;函数的定义域及其求法. 【专题】综合题;转化思想;对应思想;综合法. 【分析】 (1)先求出集合 A,化简集合 B,根据 根据集合的运算求, (CRA)∩B; (2) 若 A∪C=R, 则可以比较两个集合的端点, 得出参数所满足的不等式解出参数的取值范围.

【解答】解: (1)由题意

,解得 7>x≥3,故 A={x∈R|3≤x<7},

B={x∈Z|2<x<10}═{x∈Z|3,4,5,6,7,8,9}, ∴(CRA)∩B{7,8,9} (2)∵A∪C=R,C={x∈R|x<a 或 x>a+1} ∴ 解得 3≤a<6

实数 a 的取值范围是 3≤a<6 【点评】本题考查集合关系中的参数取值问题,解题的关键是理解集合运算的意义,能借助 数轴等辅助工具正确判断两个集合的关系及相应参数的范围,本题中取参数的范围是一个难 点,易因为错判出错,求解时要注意验证等号能否成立.

19.已知函数



(Ⅰ)若 g(x)=f(x)﹣a 为奇函数,求 a 的值; (Ⅱ)试判断 f(x)在(0, +∞)内的单调性,并用定义证明. 【考点】奇偶性与单调性的综合. 【专题】函数的性质及应用. 【分析】 (I)根据 f(x)表达式,得 g(x)= 法即可求出实数 a 的值. (II)设 0<x1<x2,将 f(x1)与 f(x2)作差、因式分解,得 f(x1)<f(x2) ,结合函数奇 偶性的定义得到函数 f(x)在(0,+∞)内是单调增函数. 【解答】解: (Ⅰ)∵ ∴g(x)=f(x)﹣a= ∵g(x)是奇函数, ∴g(﹣x)=﹣g(x) ,即 解之得 a=1.… (Ⅱ)设 0<x1<x2,则 = . , ,… ,再根据奇函数的定义采用比较系数

∵0<x1<x2, ∴x1﹣x2<0,x1x2>0,从而 即 f(x1)<f(x2) . 所以函数 f(x)在(0,+∞)内是单调增函数. 【点评】本题给出含有分式的基本初等函数,讨论函数的单调性与奇偶性质.着重考查了函 数的奇偶性的定义和用定义法证明单调性等知识,属于基础题. ,

20.根据市场调查,某商品在最近的 40 天内的价格 f(t)与时间 t 满足关系 ,销售量 g(t)与时间 t 满足关系 g(t)= ﹣t+50(0≤t≤40,t∈N) ,设商品的日销售额的 F(t) (销售量与价格之积) , (Ⅰ)求商品的日销售额 F(t)的解析式; (Ⅱ)求商品的日销售额 F(t)的最大值. 【考点】函数模型的选择与应用. 【专题】综合题. 【分析】 (Ⅰ)根据题设条件,由商品的日销售额 F(t)=f(t)g(t) ,能够求出 F(t)的 解析式. (Ⅱ)当 0≤t<20,t∈N 时,F(t)=﹣t2+30t+100=﹣(t﹣15)2+1225.当 t=15 时,F(t)
max

=1225;当 20≤t≤40,t∈N 时,F(t)=t ﹣92t+2100=(t﹣46) ﹣16,当 t=20 时,F(t) =660.由此能求出商品的日销售额 F(t)的最大值.

2

2

max

【解答】解: (Ⅰ)据题意,商品的日销售额 F(t)=f(t)g(t) , 得 ,

即 F(t)= (Ⅱ)当 0≤t<20,t∈N 时, F(t)=﹣t +30t+1000=﹣(t﹣15) +1225, ∴当 t=15 时,F(t)max=1225; 当 20≤t≤40,t∈N 时,
2 2



F(t)=t ﹣92t+2100=(t﹣46) ﹣16, ∴当 t=20 时,F(t)max=660 综上所述,当 t=15 时, 日销售额 F(t)最大, 且最大值为 1225. 【点评】本题考查函数在生产实际中的应用,考查运算求解能力,推理论证能力;考查函数 与方程思想,化归与转化思想.综合性强,是高考的重点,易错点是知识体系不牢固.解题 时要注意配方法的灵活运用.

2

2

21.已知函数 f(x)=x2+2ax+2,x∈. (1)求实数 a 的取值范围,使 y=f(x)在区间上是单调函数; (2)若 a≥1,用 g(a)表示函数 y=f(x)的最小值,求 g(a)的解析式. 【考点】二次函数的性质;函数解析式的求解及常用方法. 【专题】函数的性质及应用. 【分析】 (1)根据 f(x)在上是单调函数,得出﹣a≤﹣5 或﹣a≥5,求解即可. (2)根据题意得出当﹣5≤﹣a≤﹣1,当﹣a<﹣5 时,分类讨论求解即可. 【解答】解: (1)函数 f(x)=x +2ax+2,x∈的对称轴为 x=﹣a, ∵f(x)在上是单调函数. ∴﹣a≤﹣5 或﹣a≥5, 得出:a≥5 或 a≤﹣5, (2)∵a≥1, ∴﹣a≤﹣1, 当﹣5≤﹣a≤﹣1, 即 1≤a≤5 时, f(x)min=f(﹣a)=2﹣a2, 即 a>5,f(x)min=f(﹣5)=27﹣10a, ∴g(a)= 【点评】本题考查了函数的性质,得出不等式组求解即可,关键是利用性质转化不等式组求 解,属于中档题.
2

22.函数

是定义在(﹣1,1)上的奇函数,且



(1)确定函数 f(x)的解析式; (2)试判断 f(x)在(﹣1,1)的单调性,并予以证明; (3)若 f(t﹣1)+f(t)<0,求实数 t 的取值范围. 【考点】奇偶性与单调性的综合. 【专题】综合题;函数的性质及应用. 【分析】 (1)由题意可得,f(﹣x)=﹣f(x) ,代入可求 b,然后由 可求函数解析式 (2)对函数求导可得,f′(x)= 断函数 f(x)在(﹣1,1)上的单调性 (3)由已知可得 f(t﹣1)<﹣f(t)=f(﹣t) ,结合函数在(﹣1,1)上单调递增可求 t 的范围 【解答】 (1)解:∵函数 ∴f(﹣x)=﹣f(x) 即 ∴﹣ax+b=﹣ax﹣b ∴b=0 ∵ 是定义在(﹣1,1)上的奇函数, ,结合已知 x 的范围判断导函数的正负即可判 可求 a,进而



∴a=1 ∴

(2)证明:∵f′(x)=

∵﹣1<x<1 时,

>0

∴f(x)在(﹣1,1)上是增函数 (没有学习导数的也可利用函数的单调性的定义) (3)解:∵f(t﹣1)+f(t)<0,且函数为奇函数 ∴f(t﹣1)<﹣f(t)=f(﹣t) , 由(2)知函数在(﹣1,1)上单调递增 ∴﹣1<t﹣1<﹣t<1 ∴ 【点评】本题主要考查了奇函数的定义的应用及待定系数求解函数的解析式,及函数的单调 性在不等式的求解中的应用


相关文章:
...上学期期中数学试卷(平行班) Word版含解析.doc
江西省宜春市高安二中2015-2016学年高一上学期期中数学试卷(平行班) Word版含解析_数学_高中教育_教育专区。2015-2016 学年江西省宜春市高安二中高一(上)期中数学...
江西省高安市二中2015-2016学年高一上学期期中考试数学....doc
江西省高安市二中2015-2016学年高一上学期期中考试数学试卷(平行班)_资格
江西省宜春市高安二中2015-2016学年高一上学期期中数学....doc
江西省宜春市高安二中2015-2016学年高一上学期期中数学试卷(平行班)_数学_高中...(t)的解析式; (Ⅱ)求商品的日销售额 F(t)的最大值. 21.已知函数 f(x...
...2019学年高一下学期期中数学试卷(平行班) Word版含解析.doc
江西省宜春市高安二中2018-2019学年高一学期期中数学试卷(平行班) Word版含解析_数学_高中教育_教育专区。2018-2019 学年江西省宜春市高安二中高一 (下) 期中...
江西省宜春市高安二中高一数学上学期期中试卷(平行班,....doc
江西省宜春市高安二中高一数学上学期期中试卷(平行班,含解析)_数学_高中教育_...2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷(平 行班) 一、...
...届高一下学期期中数学试卷(平行班) Word版含解析.doc
江西省宜春市高安二中2019届高一学期期中数学试卷(平行班) Word版含解析 - 2018-2019 学年江西省宜春市高安二中高一 (下) 期中数学试卷 (平 金榜题名,高考...
高安二中学年高一数学上学期期中试卷(平行班,含解析).doc
高安二中学年高一数学上学期期中试卷(平行班,含解析)_数学_高中教育_教育专区。...2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷(平 行班) 一、...
江西省宜春市高安二中2015-2016学年高一下学期期末化学....doc
江西省宜春市高安二中2015-2016学年高一学期期末化学试卷 Word版含解析_理化生_高中教育_教育专区。2015-2016 学年江西省宜春市高安二中高一(下)期末化学试卷 一...
【物理】江西省宜春市高安二中2015-2016学年高一上学期期中试卷(....doc
【物理】江西省宜春市高安二中2015-2016学年高一上学期期中试卷(平行班)_理化生_高中教育_教育专区。【物理】江西省宜春市高安二中2015-2016学年高一上学期期中试卷...
江西省宜春市高安二中2015-2016学年高一上学期期中数学....doc
(t)<0,求实数 t 的取值范围. 2015-2016 学年江西省宜春市高安二中高一(上)期中数 学试卷(平行班)参考答案与试题解析 一、选择题(本题共 12 道小题,每小...
江西省高安市第二中学2015-2016学年高一上学期期中考试....doc
江西省高安市第二中学2015-2016学年高一上学期期中考试数学试题(平行班)_数学_高中教育_教育专区。高安二中高一年级 2015-2016 学年度期中考试(B 卷) 数学试卷 ...
2015-2016学年江西省宜春市高安二中高一上学期期中数学....doc
2015-2016学年江西省宜春市高安二中高一上学期期中数学试卷解析(奥赛班)_数学...平行四边形 EMFN 的面积为 S,设 y=S2,则 y 关于 x 的函数 y=f(x)的解析...
...2018学年高一下学期期中数学试卷(平行班) Word版含解析.doc
江西省宜春市高安二中2017-2018学年高一学期期中数学试卷(平行班) Word版含解析_数学_高中教育_教育专区。2017-2018 学年江西省宜春市高安二中高一 (下) 期中...
江西省高安市二中2015-2016学年高一上学期期中考试物理....doc
江西省高安市二中2015-2016学年高一上学期期中考试物理试卷(平行班)_资格考试/认证_教育专区。江西省高安二中 2015-2016(上)期中考试 高一物理试题 B 一、选择题...
...年江西省宜春市高安二中高一上学期期中数学试卷带答....pdf
2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷 (奥赛班) 一.选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个 选项...
2015-2016年江西省宜春市高安二中高一上学期数学期中试....doc
2015-2016年江西省宜春市高安二中高一上学期数学期中试卷解析(奥赛班) - 2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷 (奥赛班) 一.选择题(本大...
2015-2016年江西省宜春市高安二中高一(上)期中数学试卷....pdf
2015-2016 学年江西省宜春市高安二中高一(上)期中数学试卷 (奥赛班) 一.选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个 选项...
...2016年江西省宜春市高安二中高一(上)数学期中试卷带....doc
【精编】2015-2016年江西省宜春市高安二中高一(上)数学期中试卷解析答案(奥赛班)_数学_高中教育_教育专区。2015-2016 学年江西省宜春市高安二中高一(上)期中...
江西省宜春市高安二中2015-2016学年高一(下)期中物理试....doc
江西省宜春市高安二中2015-2016学年高一(下)期中物理试卷(奥赛班)(解析版)_高一理化生_理化生_高中教育_教育专区。江西省宜春市高安二中2015-2016学年高一(下)...
江西省高安市二中2015-2016学年高一上学期期中考试化学....doc
江西省高安市二中2015-2016学年高一上学期期中考试化学试卷(平行班)_资格考试/认证_教育专区。江西省高安二中 2015-2016 高一上学期期中考试化学 试题 B 卷部分...
更多相关标签: