当前位置:首页 >> 学科竞赛 >>

高中生物竞赛培优教案植物(一)


植物培优教案(一)
生物界的划分 在自然界中,生物是多种多样的,植物只是自然界中生物的一员。整个生
物界的划分,关系到植物界的细致分类和进行其他的研究。生物界究竟应该分成几个界,长 期来,随着科学的发展,人们有着不同的看法。瑞典博物学家林奈在十八世纪就把生物界分 成植物和动物两界。这种两界系统,建立得最早,也沿用得最广和最久。以后出现了三界系 统,即在动、植物界外,又另立原生生物界。后来又有了四界系统,即植物界、动物界、原 生生物界(或真菌界)和原核生 物界。 所谓五界系统, 即植物界、 动物界、真菌界、原生生物界和 原核生物界。在七十年代,我国 学者又把类病毒和病毒另立非 细胞生物界, 和植物界、 动物界、 菌物界(即真菌界)、原生生物 界、原核生物界,共同组成了六 界系统。

植物的组织
一、植物组织的概念 在个体发育中,具有相同来 源的(即由同一个或同一群分生 细胞生长、分化而来的)同一类 型, 或不同类型的细胞群组成的 结构和功能单位,称为组织。由 一种类型细胞构成的组织, 称简 单组织。 由多种类型细胞构成的

1

组织,称复合组织。 二、植物组织的类型 植物组织分成分生组织和成熟组织两大类:

(一)分生组织 1.分生组织的概念:能持续分裂的细胞组成的一些细胞群,称为分生组织。 2.分生组织的分类 (1)按在植物体上的位置分:根据在植物体上的位置,可以把分生组织区分为顶端分生
组织、侧生分生组织和居间分生组织。

①顶端分生组织:顶端分生组织(图 1—39)位于茎与根主轴的和侧枝的顶端。它们的分
裂活动可以使根和茎不断伸长,并在茎上形成侧枝和叶,使植物体扩大营养面积。茎的顶端 分生组织最后还将产生生殖 器官。 顶端分生组织细胞的特 征是:细胞小而等径,具有薄 壁,细胞核位于中央并占有较 大的比例,液泡小而分散,原 生质浓厚,细胞内通常缺少后 含物。

②侧生分生组织:侧生分生
组织(图 1—40)位于根和茎 的侧方的周围部分,靠近器官 的边缘。它包括形成层和木栓 形成层。形成层的活动能使根 和茎不断增粗,以适应植物营 养面积的扩大。木栓形成层的 活动是使长粗的根、茎表面或 受伤的器官表面形成新的保 护组织。 侧生分生组织的细胞与 顶端分生组织的细胞有明显 的区别,例如形成层细胞大部 分呈长 梭形,原生质体高度 液泡化,细胞质不浓厚。而且 它们的分裂活动往往随季节 的变化具有明显的周期性。

③居间分生组织:居间分生
组织是夹在多少已经分化了 的组织区域之间的分生组织, 它是顶端分生组织在某些器 官中局部区域的保留。

(2)按来源的性质分:分生
组织也可根据组织来源的性 质划分为原分生组织、初生分 生组织和次生分生组织。

2

①原分生 组织:原分
生组织是直 接由胚细胞 保留下来 的,一般具 有持久而强 烈的分裂能 力,位于根 端和茎端较 前的部分。

②初生分 生组织: 初
生分生组织 是由原分生 组织刚衍生 的细胞组 成,这些细 胞在形态上 已出现了最 初的分化, 但细胞仍具有很强的 分裂能力,因此,它是一种边分 裂一边分化的组织, 也可看作是 由分生组织向成熟组织过渡的 组织。

③次生分生组织: 次生分生组
织是由成熟组织的细胞, 经历生 理和形态上的变化, 脱离原来的 成熟状态(即反分化), 重新转变 而成的分生组织。 如果把二种分类方法对应 起来看, 则广义的顶端分生组织 包括原分生组织和初生分生组 织, 而侧生分生组织一般讲是属 于次生分生组织类型, 其中木栓 形成层是典型的次生分生组织。

(二)成熟组织 1.成熟组织的概念:分生组
织衍生的大部分细胞, 逐渐丧失 分裂的能力,进一步生长和分 化,形成的其它各种组织,称为 成熟组织,有时也称为永久组 织。

2.成熟组织的类型:成熟组织可以按照功能分为保护组织、薄壁组织、机械组织、输导
3

组织和分泌结构。

(1)保护组织:保护组织是覆盖于植物体表起保护作用的组织,它的作用是减少体内水分
的蒸腾,控制植物与环境的气体交换,防止病虫害侵袭和机械损伤等。保护组织包括表皮和 周皮。

①表皮:表皮又称表皮层(图 1—41A,B;图 1—42) ,是幼嫩的根和茎、叶、花、果实等
的表面层细胞。它是植物体与外界环境的直接接触层,因此,它的特点与这一特殊位置和生 理功能密切有关。

②周皮:周皮(图 1—44)是取代表皮的次生保护组织,存在于有加粗生长的根和茎的表
面。它由侧生分生组织——木栓形成层形成。木栓形成层平周地分裂,形成径向成行的细胞 行列,这些细胞向外分化成木栓,向 内分化成栓内层。木栓层、木栓形成 层和栓内层合称周皮。

(2)薄壁组织: 1—45)薄壁组织 (图
是进行各代谢活动的主要组织,光合 作用、呼吸作用、贮藏作用及各类代 谢物的合成和转化都主要由它进行。 薄壁组织占植物体体积的大部分,如 茎和根的皮层及髓部、叶肉细胞、花 的各部,许多果实和种子中,全部或 主要是薄壁组织,其它多种组织,如 机械组织和输导组织等,常常包埋于 其中。因此,从某种意义上讲,薄壁 组织是植物体组成的基础。

(3)机械组织:机械组织是对植物起
主要支持作用的组织。它有很强的抗 压、抗张和抗曲挠的能力,植物能有 一定的硬度,枝干能挺立,树叶能平 展,能经受狂风暴雨及其它外力的侵 袭,都与这种组织的存在有关。 根据细胞结构的不同,机械组织 可分为厚角组织和厚壁组织二类。 ① 厚角组织: 厚角组织 (图 1—48) 细胞最明显的特征是细胞壁具有不均 匀的增厚,而且这种增厚是初生壁性 质的。壁的增厚通常在几个细胞邻接 处的角隅上特别明显, 故称厚角组织。 但也有些植物的厚角组织是细胞的弦 向壁特别厚。

②厚壁组织: 厚壁组织与厚角组织不
同,细胞具有均匀增厚的次生壁,并 且常常木质化。细胞成熟时,原生质 体通常死亡分解,成为只留有细胞壁 的死细胞。 根据细胞的形态,厚壁组织可分为石细胞和纤维二类。

4

石 细 胞
多为等径或略 为伸长的细 胞,有些具不 规则的分枝成 星芒状,也有 的较细长。它 们通常具有很 厚的、强烈木 质化的次生 壁,壁上有很 多圆形的单纹 孔,由,于壁 特别厚而形成 明显的管状纹 孔道,有时, 纹孔道随壁的 增厚彼此汇 合,会形成特 殊的分枝纹孔 道。细胞成熟 时原生质体通 常消失,只留 下空而小的细 胞腔。

纤维: 是二端
尖细成梭状的 细长细胞,长 度一般比宽度 大许多倍。细 胞壁明显地次生 增厚, 但木质化程 度很不一致, 从不 本质化到强烈木 质化的都有。 壁上 纹孔较石细胞的 稀少, 并常常呈缝 隙状。 成熟时原生 质体一般都梢失, 细胞腔成为中空, 少数纤维可保留 原生质体, 生活较 长的一段时间。

(4)输导组织:
5

输导组织是植物体中担负物质长途运输 的主要组织。根从土壤中吸收的水分和 无机盐运送到地上部分。叶的光合作用 的产物,由它们运送到根、茎、花、果 实中去。植物体各部分之间经常进行的 物质的重新分配和转移,也要通过输导 组织来进行。 在植物中,水分的运输和有机物的 运输,分别由二类输导组织来承担,一 类为木质部,主要运输水分和溶解于其 中的无机盐;另一类为韧皮部,主要运 输有机营养物质。

①木质部: 木质部是由几种不同类型的
细胞构成的一种复合组织,它的组成包 含管胞和导管分子、纤维、薄壁细胞等。 其中管胞和导管分子是最重要的成员, 水的运输是通过它们来实现的。 管胞和导管分子都是厚壁的伸长 细胞,成熟时都没有生活的原生质体, 次生壁具有各种式样的木质化增厚,在 壁上呈现出环纹、螺纹、梯纹、网纹和 孔纹的各种式样。然而,管胞和导管分 子在结构上和功能上是不完全相同的。 管胞是单个细胞,末端尖锐,在器官 中纵向连接时,上、下二细胞的端部紧密 地重叠,水分通过管胞壁上的纹孔,从一 个细胞流向另一个细胞。管胞大多具较厚 的壁,和有重叠的排列方式,使它在植物 体中还兼有支持的功能。所有维管植物都 具有管胞,而且大多数蕨类植物和裸子植 物的输水分子,只由管胞组成。在系统发 育中,管胞向二个方向演化,一个方向是 细胞壁更加增厚,壁上纹孔变窄,特化为 专营支持功能的木纤维;另一个方向是细 胞端壁溶解.特化为专营输导功能的导管 分子。 导管分子与管胞的区别,主要在于细 胞的端壁在发育过程中溶解消失,形成大 的孔,称为穿孔。在木质部中,许多导管 分子纵向地连接成细胞行列,通过穿孔直 接沟通, 这样的导管分子链就称导管。导管长 短不一,由几厘米到一米左右,有些藤本植物可长达数米。导管分子的管径一般也比管胞粗 大,因此,导管比管胞具有较高的输水效率。被子植物中除了最原始的类型外,木质部中主

6

要含有导管, 而大多数裸子植物和蕨类植物则缺乏导管, 这就是被子植物更能适应陆生环境 的重要原因之一。 木质部中的纤维称为木纤维,是末端尖锐的伸长细胞,在同一植物中,一般比管胞有胶 厚的壁,而且强烈木质化,成熟时原生质体通常死亡,但也有些植物的木纤维能生活较长的 时间。木纤维的存在使木质部兼有支持的功能。 木质部中生活的薄壁细胞,称木薄壁细胞,它们在发育后期,细胞壁通常也木质化,这 些细胞常含有淀粉和结晶,具有储藏的功能。

7

②韧皮部:韧皮部也是一种复合组织,包含
筛管分子或筛胞、伴胞、薄壁细胞、 纤维等 不同类型的细胞, 其中与有机物的运输直接有 关的是筛管分子或筛胞。

筛管分子:与导管分子相似,是管状细胞,
在植物体中纵向连接,形成长的细胞行列,称 为筛管。 筛管分子不具木质化的初生壁, 它们的端 壁特化成筛板。在筛板上具有较大的筛孔,上 下邻接的筛管分子, 有较粗的原生质连络索通 过筛孔互连系,有机物的运输,便是通过筛管 分子间原生质体这种密切的联系来实现的, 大 多数被子植物中,筛管分子的侧面,紧邻着伴 胞。 伴胞是和筛管分子起源于同一个母细胞的 小型薄壁细胞具有细胞核, 它与筛管分子间有 稠密的胞,间连丝相通,筛管分子的运输功能 及其它生理活动,与伴胞的活动是密切相关 的。筛管分子存在于被子植物中。在裸子植物 和蕨类植物的韧皮部中运输有机物的分子是 筛胞。它与筛管分子的主要区别,在于细胞的 端壁不特化成筛板, 在筛胞的壁上 只具有筛域, 筛域上的原生质丝通 过的孔,远比筛板上的小。因此, 筛胞与筛管相比,特化程度较低, 输导功能较弱。 韧皮部的纤维也起支持作用, 但韧皮纤维的细胞壁木质化程度 较弱, 或不木质化, 因而质地较坚 韧, 有较强的抗曲挠的能力。 许多 植物的韧皮纤维发达, 细胞长、 纤 维素含量高、 质地柔软, 成为商用 纤维的重要来源。 例如苎麻、 亚麻、 罗布麻等的韧皮纤维长而不木质 化, 可作衣着和帐篷的原料, 黄麻、 洋麻、 苘麻等的韧皮纤维较短, 有 一定程度的木质化, 可用于制麻袋 和绳索等。 韧皮部的薄壁细胞, 主要起储 藏作用,常含有结晶和各类储藏 物。 以上所述, 可以了解木质部和 韧皮部是植物体中起输导作用的 二类复合组织, 它们的组成中分别以具有输导功能的管状分子——导管分子、 管胞和筛管分 子或筛胞为主,所以,在形态学上,又把二者分别或合称为维管组织。

8

(6)分泌结构:某些
植物细胞能合成一些 特殊的有机物或无机 物,并把它们排出体 外、细胞外或积累于 细胞内,这种现象称 为分泌现象。植物分 泌物的种类繁多,有 糖类、挥发油、有机 酸、生物硷、丹宁、 树脂、油类飞蛋白质、 酶、 杀菌素、 , 生长素、 维生素及多 种无机 盐等,这些分泌物在 植物的生活中起着多 种作用。例如,根的 细胞分泌有机酸、生 长素、酶等到土壤中,使难溶性的盐类转化成可溶性的物质,能被植物吸收利用,同时,又 能吸引一定的微生物,构成特殊的根际微生物群,为植物健壮生长创造更好的条件。植物分 泌蜜汁和芳香油,能引诱特殊的昆虫前来采蜜,帮助传种接代。某些植物分泌物能抑制或杀 死某些病菌及其它植物,或能对动物和人形成毒害,以利于保护自身。另一些分泌物能促进 其它植物的生长,形成有利的相互依存的关系等。也有些分泌物是植物的排泄物或储藏物。 许多种类植物的分泌物具有重要的经济价值,例如橡胶、生漆、芳香油、蜜汁等。 植物产生分泌物的细胞来源各异,形态多样,分布方式·也不尽相同,有的单个分散于 其它组织中,也有的集中分布,或特化成一定结构,统称为分泌结构。根据分泌物是否排出 体外,分泌结构可分成外部的分泌结构和内部的 分泌结构二大类。

①外部的分泌结构:外部的分泌结构普遍的特
征,是它们的细胞能分泌物质到植物体的 表面。 常见的类型有腺表皮、腺毛、蜜腺和排水器等。 腺表皮:即植物体某些部位的表皮细胞为腺状, 具有分泌的功能。例如矮牵牛、漆树等许多植物 花的柱头表皮即是腺表皮,细胞成乳头状突起飞 具有浓厚的细胞质,被有薄的角质层,能分泌出 含有糖、氨基酸、酚类化合物等组成的柱头液, 利于粘着花粉和控制花粉萌发。

腺毛:腺毛是各种复杂程度不同的、具有分泌功
能的表皮毛状附属物(图 1—56)。腺毛一般具有头 部和柄部二部分,头部由单个或多个产生分泌物 的细胞组成。柄部是由不具分泌物功能的薄壁细 胞组成,着生于表皮上。熏衣草、棉花、烟草、 天竺葵、薄荷等植物的茎和叶上的腺毛均是如此。 荨麻属的螯毛具有特殊的结构,它是单个的分泌 细胞,似一个基部膨大的毛细管,顶部封、闭为小圆球状。当毛与皮肤接触时,圆球顶部原

9

有的缝线破裂,露出锋利的边缘,刺进皮肤, 再由泡状基却将含有的蚁酸和组织胺等液体 挤进伤口。许多木本植物如梨属、山核桃属、 桦木肩等,在幼小,的叶片上具有粘液毛,分 泌树胶类物质覆盖整个叶芽, 仿佛给芽提供了 一个保护性外套。食虫植物的变态叶上,可以 有多种腺, 毛分别分泌蜜露, 粘液和消化酶等, 有引诱、粘着和消化昆虫的作用。

蜜腺:蜜腺是一种分泌糖液的外部分泌结构,
它们发生在植物的花上(花蜜腺)或营养体部 分(花外蜜腺)。有的蜜腺只是腺表皮类型,有 的分化成特殊的结构,例如,油莱的蜜腺呈圆 球状, 位于花托上, 蓖麻、 樱桃的蜜腺呈杯状, 位于叶或茎上。它们的分泌细胞或仅限于表 层,或有几层细胞深,靠近分泌细胞具有维管 束。这些维管束的木质部和韧皮部的比例,与 蜜腺分泌蜜汁的成分有关, 当维管束以韧皮部 为主时,蜜汁中糖分含量高,当以木质部为主 时,糖分含量降低,水分含量增高。

排水器:排水器是植物格体内过剩的水分排
出到体表的结构。 它的排水过程称为吐水、 排水器一般在叶尖或叶锯齿的边缘, 具有退化的、 不能关闭的气孔称为水孔。水从叶脉木质部的末端,通过排列疏松无叶绿素的叶肉组织(通 水组织),经水孔流到叶表面。例如旱金莲、卷心菜、番茄、慈菇和莲等植物的叶上都有这 样的排水器。

②内部的分泌结构:分泌物不排到体外的分泌结构,称为内部的分泌结构,包括分泌细
胞,分泌腔或分泌道以及乳汁管。

分泌细胞: 分泌细胞可以是生活细胞或非生活细胞, 但在细胞腔内都积摹有特殊的分泌物。
它们一般为薄擘细胞, 成单个地分散于其它细胞之中; 细胞体积通常明显地较周围细胞为大, 尤其在长度上更为显著,因此容易识别。根据分泌物质的类型,可分为油细胞(樟科、木兰 科、腊梅科等)、粘液细胞(仙人掌科、锦葵科、椴树科等)、含晶细胞 (桑科、石蒜科、鸭跖 草科等、鞣质细胞(葡萄科、景天科、豆科、蔷薇科等)以及芥子酶细胞(白花菜科、十字花科) 等。

分泌腔和分泌道: 它们是植物体内贮藏分泌物的腔或管道。 它们或是因部分细胞解体后形
成的,或是因细胞中层溶解,细胞相互分开而形成的,或是这二种方式相结合而形成的。例 如柑橘叶子及果皮中通常看到的黄色透明小点, 便是溶生方式形成的分泌腔, 最初是部分细 胞中形成芳香油,后来这些细胞破裂,内含物释放到溶生的腔内。在这种溶生腔的周围可以 看到有部分损坏的细胞位于腔的周围。 松柏类木质部中的树脂道和漆树韧皮部中的漆汁道是 裂生型的分泌道, 它们是分泌细胞之间的中层溶解形成的纵向或横向的长形细胞间隙, 完整 的分泌细胞衬在分泌道的周围,树脂或漆液曲这些细胞排出,积累在管道中。芒果属的叶和 茎中的分泌道是裂溶生起源的。

乳汁管:乳汁管是分泌乳汁的管状细胞。一般有二种类型,一种称为无节乳汁管,它是一
个细胞随着植物体的生长不断伸长和分枝而形成的,长度可达几米以上。如夹竹桃科、桑科 和大戟属植物的乳汁管,便是这种类型。另一种称为有节乳汁管,是由许多管状细胞在发育 过程中彼.此相连,以后连接壁融化消失而形成的。如菊科、罂粟科、番木瓜科、芭蕉科飞

10

旋花科以及橡胶树属等植物的。乳汁管,就是这种类型。 乳汁管的壁是初生壁,不木质化,乳汁管成熟耐是多核的,液泡与细胞质之间没有明 确的界线,原生质体包围着乳汁。乳汁的成分极端复杂,往往含有碳水化合物、蛋白质、脂 肪、单宁物质售植物硷、盐类、树脂及橡胶等。各种植物乳汁的成分和颜色也不相同,如罂 粟的乳汁含有大量的植物硷售菊科的乳汁常含有糖类、 番木瓜的乳汁可含木瓜蛋白酶。 许多 科、属的乳汁中含有橡胶,它是萜烯类物质,成小的颗粒悬浮于乳汁中。含胶多的植物种类 成为天然橡胶的来源, 其中最著名的有橡胶树、 印度橡胶树、 橡胶草、 银色橡胶菊和杜仲等。

三.组织系统
植物的每一器官都由一定种类的组织构成由具有不同功能的器官中,组织的类型不 同,排列方式不同,然而,植物体是一个有机的整体,各个器官除了具有功能上的相互联系 外,同时在它们的内部结构上也必然具有连续性和统一性,在植物学上为了强调这一观点, 采用了组织系统这一概念。一个植物整体上,或一个器官上的一种组织,或几种组织在结构 和功能上组成一个单位,称为组织系统。 维管植物的主要组织可归并成三种组织系统,即皮组织系统、维管组织系统和基本 组织系统,简称为皮系统、维管系统和基本系统。皮系统包括表皮和周皮,它们覆盖 于植物各器官的麦面, 形成一个保护整个植物体的连续的保护层。 维管系统包括输导有机养 料的韧皮部和输导水分的木质部,它们连续地贯穿于整个植物体内,把生长区、发育区售有 机养料制造区和储藏区都连接起来。 基本系统主要包括各类薄壁组织、 厚角组织和厚壁组织 乳它们是植物体各部分的基本组成。植物整体的结构表现为维管系统包埋于基本系统之中, 而外面又覆盖着皮系统。各个器官结构上的变化,除表皮或周皮是始终包被在最外层外,主 要表现在维管组织和基本组织的相对分布上的差异。

11

种子和幼苗
第一节
一、

种子的结构

种子的结构 虽然种子的形态存有差异, 但是种子的基本结构却是一致 的。一般种子都由胚、胚乳和种 皮三部分组成。 (一)胚: 胚是构成种子的最主要 部分,是新生植物的雏体,是由 胚根、胚芽、胚轴和子叶四部分 组成。 (二)胚乳:胚乳是种子集中贮 藏养料的地方,一般为肉质,占 有种子的一定体积。 也有成熟的

种子不具胚乳,这类种子在生长发育时,胚乳的养料被胚吸收, 转入子叶中贮存,所以成熟的种子里胚乳不再存在,或仅残存 一干燥的薄层,不起营养贮藏的作用。 (三)种皮 种皮是种子外面的覆被部分,具有保护种子不受外 力机械损伤和防止病虫害入侵的作用,常由好几层细胞组成, 但其性质和厚度随植物种类而异。 二、种子的类型 根据以上所述,在成熟种子中,有的具胚乳结构,有的胚 乳却不存在,因此,就种子在成熟时是否具有胚乳,而把种子 分为二种类型:一种是有胚乳的,另一种是没有胚乳的,前者 称为有胚乳种子,后者称为无胚乳种子。 (一)有胚乳种子:这类种子由种皮、胚和胚乳三部分组成。双 子叶植物中的蓖麻、烟草、桑、茄子、田菁等植物的种子, 以及单子叶植物中的水稻、小麦、玉米、洋葱、高粱等植物 的种子,都属于这一类型。 1.蓖麻种子的结构:蓖麻的种子椭圆形,稍侧扁,种皮坚硬光

12

滑,具斑纹。 2.小麦种子的结构: 小麦籽粒的外围保护 层,并不单纯是种皮, 而是果实部分的果皮 和种子本身的种皮共 同组成的复合层,二 者互相愈合,不易分 离,在果实的分类上, 称为颖果。 (二)无胚乳种子:这 类种子由种皮和胚二 部分组成,缺乏胚乳。 双子叶植物如大豆飞 花生、蚕豆、棉花、 油菜、瓜类的种子和 单子叶植物的慈菇、 泽泻等的种子,都属 于这一类型。 1.蚕豆种子的结构: 蚕豆的种皮绿色,干 燥时坚硬,浸水后转 为柔软革质。 2.慈菇种子的结构:慈菇的种子很小,包在侧扁的三角形瘦果内,每一果实仅含一粒种子。 种子由种皮和胚二部分组成。

第二节

种子的萌发和幼苗的形成

一、种子的休眠和种子的寿命 (一) 种子的休眠:有些植物的种子,如人参飞红松,成熟后,即使在适宜的环境条件下,也 不能立即萌发,必须经过一段相对静止的阶段,才萌发。种子的这一性质称为休眠。 种子的休眠不外以下几种原因: 1. 种皮阻碍了种子对水分和空气的吸收:这类种子的种皮极其坚厚,含有角质、角质层 或酚类化合物,不易使水分透过。 2. 种子的后熟作用:有些植物的种子在脱离母体时,胚体并未发育完全,或胚在生理上尚 未全部成熟,这类种子即使取得了适宜的环境条件,也不能萌发成长。 3. 由于某些抑制性物质的存在,阻碍了种子的萌发:抑制种子萌发的物质有:有机盐、 植物碱和某些植物激素, 以及某些经分解后能释放氨或氰类的有机物这类物质有的产生在种 子内部——胚,有的产生在种皮,有的存在于果实的果肉或果汁里,只有消除了这些抑制性 物质,才能使种子得到正常的萌发。 (二)种子的寿命: 种子的寿命是指种子在一定条件下保持生活力的最长期限, 超过这个期限, 种子的生活力就丧失,也就失去萌发的能力。 二、种子萌发的外界条件:有充足的水分、适宜的温度和足够的氧气。 1.种子萌发必须有充足的水分:干燥的种子含水量少,一般仅占种子总重量的 6 一 10%, 在这样的条件下, 很多重要的生命活动是无法进行的, 所以种子萌发的首要条件是吸收充分 的水分,只有种子吸收了足够的水分以后,才能使生命活跃起来。

13

2.种子萌发要有适宜的温度:种子萌发时,种子内的一系列物质变化,包括胚乳或子叶内

有机养料的分解, 以及由有机和无机物质同化为生命的原生质, 都是在各种酶的催化作用下 进行的。 而酶的作用需要有一定的温度才能进行, 所以温度也就成了种子萌发的必要条件之 一。 3.种子萌发要有足够的氧气:种子萌发时,除水分、温度外,还要有足够的空气,这是因 为种子在萌发时,种子各部分细胞的代谢作用加快进行。所有这些活动是需要能量的,能量 的来源只能通过呼吸作用产生。所以种子的萌发,氧气就成为必要的条件之一,特别是在萌 发初期,种子的呼吸作用十分旺盛,需氧量更大。 三、种子萌发成幼苗的过程:种子的萌发过程,现在把整个的过程,扼要归纳如下: 1.种子从外界吸收足够的水分后,原来干燥、坚硬的种皮逐渐变软。水分继续源源向胚乳 和胚细胞渗入, 整个种子因吸水而呈现膨胀。 吸水后的种皮加强了对氧和二氧化碳的渗透性, 有利于呼吸作用的进行。 2.种子萌发时的养料,是在种子形成时就已贮藏在胚乳或子叶内,原来在胚细胞里存在的 各种酶物质,吸水后,在一定的温度条件下加强活动,将贮存在胚乳或子叶里的不溶性大分 子化合物分解成简单的可溶性物质,运往胚根、胚芽、胚轴等部分,供细胞吸收利用。 3.种子的胚细胞同化了这部分养料,使之成为有生命的原生质,增加到细胞里去,细胞的

14

体积有了增大。经过细胞分裂,也增多了细胞的数量,这就使胚根、胚芽、胚轴很快地生长

起来。这些生长活动所需要的能量,是通过一部分有机物质的氧化而产生的,所以种子在萌

发时,呼吸特别旺盛,这一现象可以从图 2-7 的实验装置得到证明。 4.经过这一系列生长过程,种子里的胚根和胚芽迅速成长起来,在一般情况下,胚根首先 突破柔软的种皮,露在种子外面,然后向下生长,形成主根。在直根系的植物种类中,这一 主根也就成为成长植株根系的主轴,并由此生出各级侧根。但在须根系的植物种类里,如小 麦、水稻、玉米等禾本科植物.在胚根伸出不久,又有数条与主根粗细相仿的不定根,由胚 轴基部伸出,组成植株的须根系。种子萌发时先形成根,可使早期幼苗固定在土壤中,及时 吸取水分和养料。 5.与此同时,胚轴的细胞也相应生长和伸长,把胚芽或胚芽连同子叶一起推出土面,如大
15

豆、棉花、油莱等。胚轴把胚芽推出土面,胚芽发展为新植株的茎轴系统。 6.胚根伸出不久,胚芽也突出种皮向上生长,伸出土面,形成茎和叶。有些植物的种子, 子叶随胚芽一起伸出土面,展开后转为绿色,进行光合作用,如棉、油莱等的种子。待胚芽 的幼叶张开行使光合作用后,子叶也就枯萎脱落。 7.至此,一株能独立生活的幼植物体也就全部长成,这就是幼苗。可见,由种子开始萌发 到幼苗形成这一阶段的生长过程, 是有赖于种子内的现成有机养料为营养的, 幼苗才能成为 独立生活的幼小植株。所以说,种子内已孕育着新植物一代的雏体,这个雏体就是胚。 四、幼苗的类型 (一)子叶出土的幼苗 这类植物的种子在萌发时,胚根先突出种皮,伸入土中,形成主根。然后下胚轴加速伸 长, 将子叶和胚芽推出土面, 所以幼苗的子叶是出土的。 种子的这一萌发方式, 称出土萌发。 (二)子叶留土的幼苗 这些植物种子萌发的特点是下胚轴并不伸长,而是上胚轴跟着伸长,所以子叶或胚乳并 不随胚芽伸出土面,而是留在土中,直到养料耗尽死去。

种子植物的营养器官
第一节 根
一、根的生理功能和经济利用

根是植物适应陆上生活在进化中逐 渐形成的器官,它具有吸收、固着、输 导、合成、储藏和繁殖等功能。 根的主要功能是吸收作用: 吸收土壤 中的水、二氧化碳和无机盐类。 根的另一功能是固着和支持作用: 植 物体具有反复分枝,深入土壤的庞大根
16

系,以及根内牢固的机械组织和维管组织的共同作用。 根的另一功能是输导作用:由根毛、表皮吸收的水分和无机盐,通过根的维管组织输 送到枝,而叶所制造的有机养料经过茎输送到根,再经根的维管组织输送到根的各部分,以 维持根的生长和生活的需要。 根还有合成的功能:据研究,在根中能合成 蛋白质所必需的多种氨基酸, 也证明根能形成激 素和植物碱。 此外,根还有储藏和繁殖的功能:根内的薄 壁组织一般较发达, 常为物质贮藏之所。 植物的 根能产生不定芽, 有些植物的根, 在伤口处更易 形成不定芽,再育成新个体。 二、根和根系的类型 (一) 主根、侧根和不定根:种子萌发时,最 先是胚根突破种皮, 向下生长, 这个由胚根细胞 的分裂和伸长所形成的向下垂直生长的根, 是植 物体上最早出现的根, 称为主根有时也称直根或 初生根。 (二)直根系和须根系:一株植物上所含有的根 的总和,也就是包含主根和它分枝的各级侧根, 或不定根和它分枝的各级侧根, 称为根系。 根系 有两种基本类型, 即直根系和须根系。 有明显的 主根和侧根区别的根系, 称为直根系。 无明显的 主根和侧根区分的根系, 如车前或根系全部由不 定根和它的分枝组成,粗细相近,无主次之分,而呈须状的根系,称为须根系。 三、根的发育 (一)顶端分生组织:种子萌发后,胚根的顶端分生组织中的细胞经过分裂,生长、分化, 形成了主根。 (二)根尖的结构和发 展:根尖是指根的顶端 到着生根毛部分的这一 段。不论主根、侧根或 不定根都具有根尖,它 是根中生命活动最旺 盛、最重要的部分。 1.根冠:根冠位于根 的先端, 是根特有的一 种组织,一般成圆锥 形, 由许多排列不规则 的薄壁细胞组成, 它象 一顶帽子(即冠)套在分 生区的外方, 所以称为 根冠。 2.分生区:分生区是 位于根冠内方的顶端

17

分生组织。 3.伸长区:伸长区位于分生区稍后方的部分,细胞分裂已逐渐停止且体积扩大,细胞显 著地沿根的长轴方向延伸,因此,称为伸长区。 4.成熟区 这个部分内,根的各种细胞已停止伸长,并且多已分化成熟,因此,称为成 熟区。成熟 区紧接伸长 区,表皮常 产生根毛, 因此,也称 为根毛区。

四、根的初生结构

18

在根尖的成熟区作一横切面,就能看到根的全部初生结构,由外至内为表皮、皮层和

维管柱三个部分。 (一) 表皮:表皮包在根的成熟区的最外面,是由 原表皮发育而成,一般由一层表皮细胞组成,表皮 细胞近似长方柱形,延长的面和根的纵轴平行,排 列整齐紧密。 (二) 皮层:皮层是由基本分生组织发育而成,它 在表皮的内方占着相当大的部分,由多层薄壁细胞 组成,细胞排列疏松,有着显著的胞间隙。 1.外皮层:皮层最外的一层细胞,即紧接表皮的一 层细胞,往往排列紧密,无间隙,成为连续的一层, 称为外皮层。 2.内皮层:皮层最内的一层,常由一层细胞组成, 排列整齐紧密,无胞间隙,称为内皮层。 (三)维管柱:维管柱是内皮层以内的部分,结构比 较复杂,包括中柱鞘和初生维管组织,有些植物的 根还具有髓,由薄壁组织或厚壁组织组成。 中柱鞘是维管柱的外层组织,向外紧贴着内皮层。 根的维管柱中的初生维管组织, 包括初生木质部 和初生韧皮部,不并列成束,而是相间排列,各自 成束。由于根的初生木质部在分化过程中,是由外 方开始向内方逐渐发育成熟, 这种方式称为外始式, 这是根发育上的一个特点。

19

20

五、侧根的形成

21

植物根上产生的支根,不论是主根、侧根或不定根上的,统称为侧根。 种子植物的侧根,不论它们是发生在主根、侧根或不定根上,通常总是起源于中柱鞘, 而内皮层可能以不同程度参加到新的根原基形成的过程中, 当侧根开始发生时, 中柱鞘的某 些细胞开始分裂。最初的几次分裂是平周分裂,结果使细胞层数增加,因而新生的组织就产 生向外的突起。以后的分裂,包括平周分裂和垂周分裂是多方向的,这就使原有的突起继续 生长,形成侧根的根原基,这是侧根最早的分 化阶段,以后根原基的分裂、生长,逐渐分化 出生长点和根冠。生长点的细胞继续分裂、增 大和分化,并以根冠为先导向前推进。 实际上,侧根的发生,在根毛区就已经开 始,但突破表皮,露出母根外,却在根毛区以 后的部分。这样,就使侧根的产生不会破坏根 毛而影响吸收功能,这是长期以来,自然选择 和植物适应环境的结果。 侧根起源于中柱鞘,因而和母根的维管组 织紧密地靠在一起,这样,侧根的维管组织以 后也就会和母根的维管组织连接起来。

六、根的次生生长和次生结构
就根的次生生长而言,在初生生长结束后,也 就是初生结构成熟后, 在初生木质部和初生韧 皮部之间,有一种侧生分生组织,即维管形成 层(简称形成层)发生并开始切向分裂的活动, 活动的过程中,经过分裂、生长、分化而使根 的维管组织数量增加, 这种由维管形成层的活 动结果, 使根加粗的生长过程, 称为次生生长。 由于根的加粗,使表皮撑破,因此,又有另外 一种侧生分生组织,即木栓形成层发生,它形 成新的保护组织周皮,以代替表皮,这也被认 为是次生生长的一部分。 次生生长过程中产生 的次生维管组织和周皮,共同组成根的次生结构。要了解次生生长和次生结构的情况,就必 须首先了解维管形成层和木栓形成层的活动情况。 (一)维管形成层的发生和它的活动: 根部形成层的产生是在初生韧皮部的内方,即两个初生木质部脊之间的薄壁组织部分开始 的。首先,这些部分的一些细胞开始分裂,成为形成层。最初的形成层是条状。以后各条逐 渐向左右两侧扩展,并向外推移,直到初生木质部脊处,在该处和中柱鞘细胞相接。这时在 这些部位的中柱鞘细胞恢复分生能力,向内方产生细胞,参与形成层的形成。至此,条状的 形成层彼此相衔接,成为完整连续的形成层环。整个形成层环由于发生的位置先后不同,存 在着不等速的细胞分裂活动,最初呈凹凸不平的波状。以后由于原来条状的部分较早形成, 因此,切向分裂的活动开始也早,所产生的组织量也较多,特别是内方新组织(即次生木质 部)的增加较多,把形成层环向外较大地推移,结果整个形成层环从横切面上看,成为较整 齐的圆形,此后,形成层的分裂活动也就按等速进行,有规律地形成新的次生结构,并把初 生韧皮部推向外方。 形成层出现后,主要是进行切向分裂。向内分裂产生的细胞形成新的木质部,加在初 生木质部的外方,称为次生木质部;向外分裂所生的细胞形成新的韧皮部,加在初生韧皮部

22

的内方,称为次生韧皮部。次生木质部和次生韧皮部,合称次生维管组织,是次生结构的主 要部分。 另外,在次生木质部和次生韧皮部内,还有一些径向排列的薄壁细胞群,分别称为木 射线和韧皮射线,总称维管射线。维管射线是次生结构中新产生的组织,它从形成层处向内 外贯穿次生木质部和次生韧皮部, 作为横向运输的结构。 次生木质部导管中的水分和无机盐, 可以经维管射线运至形成层和次生韧皮部。相似地,次生韧皮部中的有机养料,可以通过维 管射线运至形成层和次生木质部。维管射线的形成,使根的维管组织内有轴向系统(导管、 管胞、筛管,伴胞、纤维等)和径向系统(射线)之分。 根的形成层所形成的次生结构的特点,总的来说,有以下各点: 1.次生维管组织内,次生木质部居内,次生韧皮部居外,相对排列,与初生维管组织 中初生木质部与初生韧皮部二者的相间排列,完全不同。维管射线是新产生的组织,它的形 成,使维管组织内有轴向和径向系统之分。 2.形成层每年向内外增生新的维管组织,特别是次生木质部的增生,使根的直径不断 地增大。因此,形成层也就随着增大,位置不断外移,这是必然的结果。所以形成层细胞的 分裂,除主要进行切向分裂外,还得有径向分裂,及其他方向的分裂,使形成层周径扩大, 才能适应内部的增长,这点将在茎内叙述。 3.次生结构中以次生木质部为主,而次生韧皮部所占比例较小,这是因为新的次生维 管组织总是增加在旧韧皮部的内方, 老的韧皮部因受内方的生长而遭受压力最大。 越是在外 方的韧皮部,受到的压力越大,到相当时候,老韧皮部就遭受破坏,丧失作用。尤其是初生 韧皮部,很早就被破坏,以后就依次轮到外层的次生韧皮部。木质部的情况就完全不同,形 成层向内产生的次生木质部数量较多, 新的木质部总是加在老木质部的外方, 因此老木质部 受到新组织的影响小。所以,初生木质部也能在根的中央被保存下来,其他、的次生木质部 是有增无已。因此,在粗大的树根中,几乎大部分是次生木质部,而次生韧皮部仅占极小的 比例。 (二)木栓形成层的发生和它的活动:有次生生长的根,由于每年增生新的次生维管组 织。在外方的成熟组织,即表皮和皮层,因内部组织的增加而受压破坏和剥落。这时伴随而 发生的现象,是根的中柱鞘细胞恢复分裂能力,形成木栓形成层。木栓形成层也是侧生分生 组织,它进行切向分裂,主要是向外方形成大量木栓,覆盖在根外,起保护作用,向内形成 少量薄壁组织,即栓内层。木栓形成层和它所形成的木栓和栓内层总称周皮,是根加粗后 所形成的次生保护组织。 上面所说的由形成层活动而产生的次生维管组织,包含次生木质部和次生韧皮部,再 加木栓形成层的活动而产生的周皮,统称次生结构。粗大的根,主要是次生结构。因此, 只有具形成层的大多数双子叶植物和裸子植物的根,才有这种次生结构。 现将双子叶植物根中组织分化的发育顺序列表如下, 作为对根内初生结构和次生结构的 整个形成过程的概括,便于复习。

23

24


相关文章:
高一生物培优计划——刘微微
高一生物培优计划生物“尖子生”在班上学习成绩比较突出,思维较活跃,老师布置的任务都 能轻松带头完成。对尖子生的培养,应有两个明确目标,一是积极引导,严格要 求...
高三生物培优试题
高三生物培优试题_高三理化生_理化生_高中教育_教育专区。培优训练 5 1.图甲...氧化塘中的风车草、圆田螺、细菌等生物共同构成___。 (2)植物细胞吸收的磷酸...
高中生物竞赛培优教程:光合作用、呼吸作用和气体交换_图文
高中生物竞赛培优教程:光合作用、呼吸作用和气体交换第二章 【考点解读】 本章研究植物形态构造和生理活动规律, 包括植物组织和器官的结构和功能、 光合作用 和呼吸...
生物培优十三
生物培优十三_高三理化生_理化生_高中教育_教育专区...13、下列过程中,需要采用植物组织培养技术的是( ) ...生物培优奥赛辅导教案... 暂无评价 15页 3下载券...
高一生物培优试题
2012-2013 学年下学期高一培优竞赛生物试题注意事项:1.字迹工整,卷面整洁,用...植物细胞质壁分离与复原的效果会更明显 ③在叶绿体色素提取和分离实验中,研磨...
高二生物培优2
高二生物培优2 - 高二生物培优 一、选择题(本题共 6 小题。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列关于细胞内物质、结构、功能的描述,...
高中生物南开培优6 植物有效成分的提取课题1 植物芳香...
高中生物南开培优6 植物有效成分的提取课题1 植物芳香油的提取题库详解_理化生_高中教育_教育专区。高中生物南开培优题库及详解【独家资源】题库在手,高考无忧 ...
高一生物培优一
高一生物培优一遗传的细胞基础一、选择题 1.细胞分裂的方式中,有丝分裂和减数...下表中,能正确表示该植物 )) A.图示细胞为次级精母细胞,细胞中含一个染色体...
高一生物培优资料三
高一生物培优资料三 (11 月 16 日)第三章细胞的基本结构 重点内容记忆: (一...功能 线粒体 动植物细胞 有氧呼吸主要场所 俗称“动力车间” 叶绿体 植物细胞 ...
怀铁一中2016届高三生物培优试题(4)
怀铁一中 2016 届高三生物培优试卷(4) 1、有人把变形虫的核取出,观察无核...6 (4)EF 段说明此时植物光合作用速率___(填“较快”或“较慢”),其原因最...
更多相关标签: