当前位置:首页 >> 高三数学 >>

江苏省如东高级中学高三数学第二轮复习备课笔记(苏教版)第17—20课时 解析几何问题的题型与方法


第 17-20 课时:

解析几何问题的题型与方法

一.复习目标: 复习目标: 1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的 其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟 练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了. 2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线 性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决 简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题. 3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法. ,明确方程中各字母的几何意义,能根据圆 4.掌握圆的标准方程: ( x ? a ) + ( y ? b) = r (r>0) 心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般
2 2 2

方程:x + y + Dx + Ey + F = 0 , 知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互
2 2

化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程 ?

? x = r cos θ (θ 为参数) ,明确各字母 ? y = r sin θ

的意义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线 的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲 线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双 曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握 a、b、c、p、e 之间的关系及 相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解 决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物 线位置关系的判定方法. 考试要求: 二.考试要求: (一)直线和圆的方程 1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式, 并能根据条件熟练地求出直线方程。 2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程 判断两条直线的位置关系。 3.了解二元一次不等式表示平面区域。 4.了解线性规划的意义,并会简单的应用。 5.了解解析几何的基本思想,了解坐标法。 6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。 (二)圆锥曲线方程 1.掌握椭圆的定义、标准方程和椭圆的简单几何性质。 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。 4.了解圆锥曲线的初步应用。 教学过程: 三.教学过程: (Ⅰ)基础知识详析 高考解析几何试题一般共有 4 题(2 个选择题, 1 个填空题, 1 个解答题),共计 30 分左右,考查的知识 点约为 20 个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲 线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链 接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到

赞助商链接
相关文章:
更多相关标签: