当前位置:首页 >> 数学 >>

1.1.1(第1课时)集合的含义(含答案)


课时提升卷(一)
集合的含义 (45 分钟 一、选择题(每小题 6 分,共 30 分) 1.下列各项中,不能组成集合的是( A.所有的正整数 C.接近于 0 的数 ) 100 分)

B.等于 2 的数 D.不等于 0 的偶数

2.(2013· 冀州高一检测)若集合 M 中的三个元素 a,b,c 是△ABC 的三边 长,则 △ABC 一定不是( A.锐角三角形 C.钝角三角形 ) B.直角三角形 D.等腰三角形

3.已知集合 M 具有性质:若 a∈M,则 2a∈M,现已知-1∈M,则下列元素一 定是 M 中的元素的是( A.1 B.0 ) C.-2 D.2

4.已知 2a∈A,a2-a∈A,若 A 只含这 2 个元素,则下列说法中正确的是 ( )

A.a 可取全体实数 B.a 可取除去 0 以外的所有实数 C.a 可取除去 3 以外的所有实数 D.a 可取除去 0 和 3 以外的所有实数 5.下列四种说法中正确的个数是( )

①集合 N 中的最小数为 1; ②若 a∈N,则-a?N; ③若 a∈N,b∈N,则 a+b 的最小值为 2; ④所有小的正数组成一个集合. A.0 B.1 C.2 D.3

二、填空题(每小题 8 分,共 24 分) 6.(2013·天津高一检测)设集合 A 中含有三个元素 2x-5,x2-4x,12,若 -3∈A,则 x 的值为 .

7.(2013·济宁高一检测)若集合 P 含有两个元素 1,2,集合 Q 含有两个 元素 1,a2,且 P,Q 相等,则 a= .

8.若 a,b∈R,且 a≠0,b≠0,则 + 的可能取值所组成的集合中元素的 个数为 .

三、解答题(9 题,10 题 14 分,11 题 18 分) 9.集合 A 的元素由 kx2-3x+2=0 的解构成,其中 k∈R,若 A 中的元素只有 一个,求 k 的值. 10.数集 M 满足条件,若 a∈M,则 ∈M(a≠±1 且 a≠0),已知 3∈M,试

把由此确定的集合 M 的元素全部求出来. 11.(能力挑战题)设 P,Q 为两个数集, P 中含有 0,2,5 三个元素,Q 中含 有 1,2,6 三个元素,定义集合 P+Q 中的元素是 a+b,其中 a∈P,b∈Q,求 P+Q 中元素的个数.

答案解析
1.【解析】选 C.怎样才是接近于 0 的数没有统一的标准,即不满足集合 元素的确定性,故选 C. 2. 【解析】 选 D.由集合元素的互异性可知,a,b,c 三个数一定全不相等, 故△ABC 一定不是等腰三角形. 3.【解析】选 C.∵-1∈M,∴2〓(-1)∈M,即-2∈M. 4.【解析】选 D.由集合元素的互异性可知,2a≠a2-a,解得 a≠0 且 a≠ 3,故选 D. 5.【解析】选 A.①中最小数应为 0;②中 a=0 时,- a∈N;③中 a+b 的最 小值应为 0;④中“小的正数”不确定.因此①②③④均不对. 6.【解析】∵-3∈A,∴-3=2x-5 或-3=x2-4x. ①当-3=2x-5 时,解得 x=1,此时 2x-5=x2-4x=-3,不符合元素的互异性, 故 x≠1; ②当-3=x2-4x 时,解得 x=1 或 x=3,由①知 x≠1,且 x=3 时满足元素的互 异性. 综上可知 x=3. 答案:3 7.【解析】由于 P,Q 相等,故 a2=2,从而 a=〒 . 答案:〒 8.【解题指南】对 a,b 的取值情况分三种情况讨论求值,即同正,一正 一负和同负,以确定集合中的元素,同时注意集合元素的互异性. 【解析】当 a>0,b>0 时, + =2;

当 ab<0 时, + =0; 当 a<0,b<0 时, + =-2. 所以集合中的元素为 2,0,-2.即集合中元素的个数为 3. 答案:3 9.【解析】由题知 A 中元素即方程 kx2-3x+2=0(k∈R)的解, 若 k=0,则 x= ,知 A 中有一个元素,符合题意; 若 k≠0,则方程为一元二次方程. 当Δ=9-8k=0 即 k= 时,kx2-3x+2=0 有两个相等的实数解,此时 A 中有一 个元素. 综上所述,k=0 或 . 10.【解析】∵a=3∈M,∴ ∴ ∴ =- ∈M,∴ =3∈M. = ∈ M, = =-2∈M,

再把 3 代入将重复上面的运算过程,由集合中元素的互异性可知 M 中含 有元素 3,-2,- , . 【拓展提升】集合中元素互异性的应用 集合中的元素是互异的 ,它通常被用作检验所求未知数的值是否符合 题意 .只要组成两个集合的元素是一样的 ,这两个集合就是相等的 ,与 两个集合中元素的排列顺序无关. 11.【解析】∵当 a=0 时,b 依次取 1,2,6,得 a+b 的值分别为 1,2,6; 当 a=2 时,b 依次取 1,2,6,得 a+b 的值分别为 3,4,8; 当 a=5 时,b 依次取 1,2,6,得 a+b 的值分别为 6,7,11.

由集合元素的互异性知 P+Q 中元素为 1,2,3,4,6,7,8,11,共 8 个.


相关文章:
2015-2016学年高中数学 1.1.1集合的含义与表示(第1课时)课时作业1...
2015-2016学年高中数学 1.1.1集合的含义与表示(第1课时)课时作业1_高一数学...由 1,0,5,1,2,5 组成的集合有六个元素 答案 A 解析 根据集合的性质判断...
...1.1.1集合的含义与表示(第1课时)课时作业 新人教A版...
2015-2016学年高中数学 1.1.1集合的含义与表示(第1课时)课时作业 新人教A版...___.(填“是”或“不是”) 答案 是,不是 1 11.若{a,0,1}={c, ,...
2015-2016高中数学 1.1.1第1课时 集合的含义课时作业 ...
2015-2016高中数学 1.1.1第1课时 集合的含义课时作业 新人教A版必修1_数学_...答案:±1 6. 若集合 P 含有两个元素 1,2, 集合 Q 含有两个元素 1, a...
第1课时—集合的含义及其表示
第1 课时 集合的含义及其表示 教学目的: (1)初步理解集合的概念,知道常用数集及其记法; 教学目的: (2)初步了解“属于”关系的意义; (3)初步了解有限集、无限...
1.1.1 集合的含义与表示 第一课时 学案(人教A版必修1)
1.1.1 集合的含义与表示 第一课时 学案(人教A版必修1)_高一数学_数学_高中...【答案】 {0, 1} (四)有限集与无限集 1、有限集(finite set):含有有限个...
1.1.1 集合的含义与表示(第一课时)
1.1.1 集合的含义与表示(第一课时)_数学_高中教育_教育专区。1.1.1 集合的含义与表示(第一课时)教学目标:1.理解集合的含义。 2.了解元素与集合的表示方法...
集合第1课时-集合的含义与表示
集合第 1 课时 集合的含义与表示 (一)教学目标 1.知识与技能 (1)初步理解...(练习答案) ,反馈矫正. 通过应 用,进一步 理解集合的 有关概念、 性质. 例...
...一课时作业:1-1-1-2 集合的含义与表示(第2课时)
高中数学人教A版必修一课时作业 1.1.1 集合的含义与表示(第 2 课时 ) 习题...{x|1≤x≤9,x∈N} D.{x|0≤x≤9,x∈Z} 答案 A 2.由大于-3 且...
1.1.1-1集合的含义与表示(第一课时)
1.1.1-1集合的含义与表示(第一课时) 人教版必修一教案人教版必修一教案隐藏>> 1.1-1 集合的含义及其表示(一)教学目标:使学生初步理解集合的基本概念,了解“...
1.1.1集合的含义及其表示(第1课时)学案(人教A版必修1)(1)
金太阳新课标资源网 wx.jtyjy.com 1.1.1 集合的含义及其表示方法(1)课前预习学案、预习目标: 初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法 ...
更多相关标签: