当前位置:首页 >> 数学 >>

人教版高中数学必修一课件:1-2-2函数的表示法2


第2课时 分段函数及映射

1

某魔术师猜牌的表演过程是这样的,表演者手中持有六 张扑克牌,不含王牌和牌号数相同的牌,让 6 位观众每人从 他手里任摸一张,并嘱咐摸牌时看清和记住自己的牌号,牌 号数是这样规定的,A 为 1,J 为 11,Q 为 12,K 为 13,其余 的以牌上的数字为准,然后,表演者让他们按如下的方法进 行计算,将自

己的牌号乘 2 加 3 后乘 5,再减去 25,把计算 结果告诉表演者(要求数值绝对准确),表演者便能立即准确 地猜出谁拿的是什么牌,你能说出其中的道理吗?
2

只要你能把数报对, 我就知道是什么牌

3

1.通过实例体会分段函数的概念. 2.会用分段函数解决简单的实际问题.(重点) 3.了解映射的概念及表示方法,并会判断一个 对应关系是否是映射. (难点)

4

探究点1 分段函数
某宾馆有相同标准的床位 100 张,根据经验,当该宾馆的 床价(即每张床位每天的租金)不超过 100 元时,床位可以 全部租出,当床位高于 100 元时,每提高 10 元,将有 3 张床 位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格, 条件是:①要方便结账,床价应为 10 元的整数倍;②该宾馆 每日的费用支出为 5750 元,床位出租的收入必须高于支出, 而且高出得越多越好. 若用 x 表示床价, 用 y 表示该宾馆一天出租床位的净收入 (即 除去每日的费用支出后的收入) ,试把 y 表示成 x 的函数,
5

? ? 100 x ? 5750 , x ≤ 100 , x ? N ? 由已知得 y ? ? ? (130 ? 0.3 x ) x ? 5750 , x ? 100 x ? N , ? ?

分段函数 有些函数在它的定义域中,对于自变量的 不同取值范围,对应关系不同,这种函数通常 分段函数 称为_________.
6

注意 (1)分段函数是一个函数,不要把它误认为是几

个函数;
(2)分段函数的定义域是各段定义域的并集,值 域是各段值域的并集.

7

1.求分段函数的函数值: x+2, x≤-1;

例1

已知函数f(x)=

x 2, -1 <x < 2 ;
2x, x≥2.

1 ,f ? ?5 ? 的值; (1)求 f ? 3? ,f( ) 2

(2)若f(x)=3,求x的值. 解:(1)
1 1 f ? 3? ? 6,f( ) ? ,f ? ?5 ? ? ?3 2 4
8

(2)x ? 3

2.画分段函数的图象

例2

画出函数 y ? x 的图象.

? x, y?? ?? x,
y

x ? 0, x ? 0.
在它的定义域中, 对于自变量的不 同取值范围,对 应关系不同.

5 4 3 2 1 -3 -2 -1 0 1 2 3

x
9

3.求分段函数的解析式 例3 某市“招手即停”公共汽车的票价按下列规则制定:

(1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5公里

的按5公里计算).
如果某条线路的总里程为20公里,请根据题意,

写出票价与里程之间的函数解析式,并画出函数的图象.

10

解:设票价为y元,里程为x公里,由题意可知,自变量x

的取值范围是(0,20]
由“招手即停”公共汽车票价的制定规定,可得到以下 函数解析式:
y 5

y=

2, 3, 4, 5,

0<x ≤ 5 5 < x ≤ 10 10 < x ≤ 15 15 < x≤20

○ ○ ○

4 3
2○ 1 O 5

根据这个函数解析式,

可画出函数图象,
如右图:

10 15 20

x
11

【变式练习】

, x ? 9, ?x ? 3 1.已知 f ( x) ? ? ? f ( f ( x ? 4)) , x ? 9.
求 f ?15 ? , f ? 7 ? 的值.
解:
f ?15 ? ? 12,f ? 7 ? ? 6
函数值作为 自变量

12

2.某质点在30s内运动速度
vcm/s是时间t的函数,它的 图象如右图,用解析式表示 出这个函数.

v/cm·s-1 30 25 20 15 10 30 t/s

解:v(t)=

t+10, (0 ≤ t<5) O 5 10 3t,(5 ≤ t<10) 30,(10 ≤t <20) -3t+90,(20 ≤ t≤30)

20

13

探究点2 映射
填写下图中的对应关系

(1)相应国家的首都 (2)求平方
A
中 国 韩 国

(3)乘以2
A
1 2

B
北 京 首 尔
X的首都

A


B
1 4

B
123456





112233

9
3

x

x
多对一

一对一

x2

x

2x 一对一

(1),(2),(3)的共同特征:集合A中的任何一个元素, 在集合B中都有唯一的元素和它对应.
14

映射的概念
非空的集合 ,如果按某一个确 一般地,设A、B是两个___________
任意 一个元素x,在集 定的对应关系f,使对于集合A中的_____ 唯一 确定的元素y与之对应,那么就称对应 合B中都有_____ f:A→B为从集合A到集合B的一个映射.

注意

若对应是映射,必须满足两个条件:
针对于集 合A来说, 不管集合B

①A中任何一个元素在B中都有元素与之对应. ②A在B中所对应的元素是唯一的.

15

因此还可以用映射的概念来定义函数: 如果A、B是非空数集,那么A到B的映射f:A→B, 就叫做A到B的函数, 记作:y=f(x) 函数是一种特殊的映射

函数

映射

对应

16

例4

以下给出的对应是不是从集合A到B的映射?

(1)集合A={P|P是数轴上的点},集合B=R,对应关系 f:数轴上的点与它所代表的实数对应;是 (2)集合A={P|P是平面直角坐标系中的点},集合B=

{(x,y)| x∈R,y∈R},对应关系f:平面直角坐标系
中的点与它的坐标对应;是 (3)集合A={x|x是三角形},集合B={x|x是圆},对应 关系f:每一个三角形都对应它的内切圆; 是 (4)集合A={x|x是新华中学的班级},集合B={x|x是新 华中学的学生},对应关系f:每一个班级都对应班里的 学生. 不是
17

1.设A=[0,2], B=[1,2], 在下列各图中,能表示 f:A→B的函数是( D ). y
2 A. 1 1 0 y 2 C. 1 2 B. 2 1 0 y 1 2 D. 1 2 1 2

y

x

x

0

x

0

1

2

x

18

2.集合A={a,b,c},B={d,e},则从A到B可以建立
不同的映射个数为( C )

A.5

B.6

C.8

D.9

【解析】逐一列出所有的映射为:

? ? c ? d, ?b ? d ? ? ?c ? e, a ? d? ? b ? e ? c ? d, ? ? ?c ? e, ?

? ? c ? d, ?b ? d ? ? ?c ? e, a ? e? ? b ? e ? c ? d, ? ? ?c ? e. ?
19

? 2x ? x 2 ,0 ? x ? 3, ? -2,3] 3.函数 f (x) ? ? 的定义域是[ ________. 2 x ? ? ? 6x, ?2 ? x ? 0

【解析】分段函数的定义域是各段定义域的并集,所
以此函数的定义域是[-2,3].

20

4.某市居民自来水收费标准如下:每户每月用水不 超过4吨为每吨1.80元,当用水超过4吨,超过部分 每吨3.00元,某月甲、乙两户居民共缴水费y元,已 知甲、乙两户的用水量分别为5x、3x(吨). (1)求y关于x的函数; (2)若甲、乙两户该月共缴水费26.40元,分别求出 甲、乙两户该月的用水量和水费. 4 14.4x,0≤x≤ , 【解析】(1)依题意得y=
4 4 20.4x-4.8, <x≤ 5 3 24x-9.6,x> 4 . 3
5

,

21

(2)由于y=f(x)在各段区间上均单调递增,
当x∈[0,
4 5 4 3 4 5 4 ]时,y≤f( )<26.4; 5 4 4 ]时,y≤f( )<26.4; 3 3

当x∈(
当x∈(

,

,+∞)时,令24x-9.6=26.4,得x=1.5.

所以甲用户的用水量为5x=7.5(吨), 缴水费4×1.8+3.5×3=17.7 (元), 乙用户用水量为3x=4.5(吨), 缴水费4×1.8+0.5×3=8.7(元).
22

1.分段函数
分段函数

概念

图象

求函数值

23

2.映射的“三性”
①“有序性”:映射是有方向的,A到B的映射与B 到A的映射往往不是同一个映射;

②“存在性”:对于集合A中的任何一个元素,集
合B中都存在元素和它对应; ③“唯一性”:对于集合A中的任何一个元素,在集 合B中和它对应的元素是唯一的.
24

昨天是已经走过的,明天是即将走过的,
惟有今天正在走过……

25


相关文章:
人教版高中数学必修一:1-2 函数及其表示 1.2.2函数的表示法(2)(学生学案)(生)
人教版高中数学必修一:1-2 函数及其表示 1.2.2函数的表示法(2)(学生学案)(生)_数学_高中教育_教育专区。1.2.2 函数的表示法(2) (学生学案) 练习 判断...
人教A版数学必修一1.2.2《函数的表示法》(2)
湖南省怀化市溆浦县江维中学高中数学必修一:1.2.2 函数的表示 法(2) 【学习目标】 1.根据要求求函数的解析式;2.了解分段函数及其简单应用; 3.理解分段函数...
新人教版高一数学必修一1.2函数及其表示
人教版高一数学必修一1.2函数及其表示_数学_高中教育_教育专区。1.2 函数...缺点:不够直观 (2)图像法:用图像表示两个变量之间的对应关系. 优点:直观、...
高中数学必修一1.2.2.1《函数的表示法》(1)导学案
高中数学必修一1.2.2.1函数的表示法》(1)导学案_数学_高中教育_教育专区...高中数学必修一人教A版1... 50页 1下载券 高中数学必修一人教A版1... 50...
必修1 1.2.2函数的表示法(2)
必修1 1.2.2函数的表示法(2)_数学_高中教育_教育专区。1.2.2 函数的表示法(2) 教学目标: (1)了解映射的概念及表示方法; (2)结合简单的对应图表,理解一...
高一人教版数学必修一精品教案全集:1.2.2函数的表示法
高一人教版数学必修一精品教案全集:1.2.2函数的表示法_高一数学_数学_高中教育_教育专区。高一人教版数学必修一精品教案全集: 课题:§1.2.2 函数的表示法 教学...
必修一 1.2.2 函数的表示法
必修一 1.2.2 函数的表示法_数学_高中教育_教育...函数表示法 优点 解析法 图象法 列表法 2、分段函数...高一数学必修一课件1.2... 43页 2下载券 ©...
人教A版数学必修一1.2.2《函数的表示法》(3)
人教A数学必修一1.2.2《函数的表示法》(3)_数学_高中教育_教育专区。湖南省怀化市溆浦县江维中学高中数学必修一:1.2.2 函数的表示 法(3) 【课标要求】...
人教A版数学必修一《1.2.2《函数的表示法》(1)》教案
人教A版数学必修一1.2.2《函数的表示法》(1)》教案_数学_高中教育_教育专区。四川省泸县第九中学高中数学1.2.2 函数的表示法(1) 》教案 新 人教 A...
更多相关标签: