当前位置:首页 >> 数学 >>

数列通项公式及求和的常用方法教案


高中数学复习专题讲座 数列的通项公式与求和的常用方法
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

高考要求 数列是函数概念的继续和延伸,数列的通项公式及前 n 项和公式都可以看作项数 n 的函数,是函数思 想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前 n 项和 Sn 可视为数列{Sn}的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有 着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效 的方法 重难点归纳 1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究 数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

数列{an}前 n 项和 Sn 与通项 an 的关系式

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

? S1 , n ? 1 an= ? ? S n ? S n ?1 , n ? 2

3 求通项常用方法 ①作新数列法 作等差数列与等比数列 ②累差叠加法 最基本形式是 an=(an-an-1+(an-1+an-2)+?+(a2-a1)+a1 ③归纳、猜想法 4 数列前 n 项和常用求法
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

1 1 n(n+1) 12+22+?+n2= n(n+1)(2n+1) 2 6 1 13+23+?+n3=(1+2+?+n)2= n2(n+1)2 4 ②等差数列中 Sm+n=Sm+Sn+mnd,等比数列中 Sm+n=Sn+qnSm=Sm+qmSn ③裂项求和 将数列的通项分成两个式子的代数和,即 an=f(n+1)-f(n),然后累加时抵消中间的许多
①重要公式 1+2+?+n=
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com



新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

应掌握以下常见的裂项

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 1 1 1 ? ? , n ? n ! ? (n ? 1)!? n !, ? ctgα ? ctg2α, n(n ? 1) n n ? 1 sin 2?

Cn ?1 ? Cr ?1 ? Cr , n n n

1 1 1 ? ? 等 (n ? 1)! n ! (n ? 1)!
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

④错项相消法 ⑤并项求和法 数列通项与和的方法多种多样,要视具体情形选用合适方法 典型题例示范讲解 例 1 已知数列{an}是公差为 d 的等差数列,数列{bn}是公比为 q 的(q∈R 且 q≠1)的等比数列,若函数 f(x)=(x-1)2,且 a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1), (1)求数列{an}和{bn}的通项公式;
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(2)设数列{cn}的前 n 项和为 Sn,对一切 n∈N*,都有
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

c c1 c1 S ? ? ? ? n =an+1 成立,求 lim 2 n ?1 n ?? S 2 n b1 b2 cn

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

命题意图 本题主要考查等差、等比数列的通项公式及前 n 项和公式、数列的极限,以及运算能力和 综合分析问题的能力 知识依托 本题利用函数思想把题设条件转化为方程问题非常明显, 而(2)中条件等式的左边可视为某 数列前 n 项和,实质上是该数列前 n 项和与数列{an}的关系,借助通项与前 n 项和的关系求解 cn 是该条件
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

第1页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

转化的突破口 错解分析 本题两问环环相扣,(1)问是基础,但解方程求基本量 a1、b1、d、q,计算不准易出错;(2) 问中对条件的正确认识和转化是关键 技巧与方法 本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数 列{dn}运用和与通项的关系求出 dn, 解 (1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,∴a3-a1=d2-(d-2)2=2d, ∵d=2,∴an=a1+(n-1)d=2(n-1);又 b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com



b3 ( q ? 2) 2 2 =q ,由 q∈R,且 q≠1,得 q=-2, ? b1 q2

?b ? b 2 ? 4ac n! lim 342 ? b 2 b 2 ? 4ac b 2 ? 4ac lim x ?? 2a r !? n ? r ? ! x ??
∴bn=b·qn 1=4·(-2)n (2)令
- -1

cn =dn,则 d1+d2+?+dn=an+1,(n∈N*),∴dn=an+1-an=2, bn



cn 8 - =2,即 cn=2·bn=8·(-2)n 1;∴Sn= [1-(-2)n] bn 3

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 (? ) 2n ? 2 S 2 n ?1 1 ? ( ?2) 2 n ?1 S ? ? 2 , lim 2 n ?1 ? ?2 ∴ 2n 1 n ?? S 2 n S 2n 1 ? ( ?2 ) (? ) 2n ? 1 2
例 2 设 An 为数列{an}的前 n 项和,An=

3 (an-1),数列{bn}的通项公式为 bn=4n+3; 2
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

(1)求数列{an}的通项公式; (2)把数列{an}与{bn}的公共项按从小到大的顺序排成一个新的数列,证明 数列{dn}的通项公式为 2n+1 dn=3 ; (3)设数列{dn}的第 n 项是数列{bn}中的第 r 项, r 为数列{bn}的前 r 项的和; n 为数列{dn}的前 n 项和, B D
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

Tn=Br-Dn,求 lim
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

n ??

Tn (a n ) 4

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

命题意图 本题考查数列的通项公式及前 n 项和公式及其相互关系;集合的相关概念,数列极限,以 及逻辑推理能力 知识依托 利用项与和的关系求 an 是本题的先决;(2)问中探寻{an}与{bn}的相通之处,须借助于二项 式定理;而(3)问中利用求和公式求和则是最基本的知识点 错解分析 待证通项 dn=32n+1 与 an 的共同点易被忽视而寸步难行; 注意不到 r 与 n 的关系, Tn 中既 使 含有 n,又含有 r,会使所求的极限模糊不清 技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把 3 拆解为 4-1,再利用二项式定理,寻找 数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出 n 与 r 的关系,正确表示 Br,问题便可迎刃而解
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/



新疆
源头学子 小屋
http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

新疆
源头学子 小屋
http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

(1)由 An=

3 3 (an-1),可知 An+1= (an+1-1), 2 2

∴an+1-an=

a 3 3 (an+1-an),即 n ?1 =3,而 a1=A1= (a1-1),得 a1=3,所以数列是以 3 为首项,公比 an 2 2
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

第2页

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

为 3 的等比数列,数列{an}的通项公式 an=3n

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(2)∵32n+1=3·32n=3·(4-1)2n=3· 2n+C 1 ·42n 1(-1)+?+C 2 n ?1 ·4·(-1)+(-1)2n]=4n+3, [4 2n 2n


∴32n+1∈{bn}

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

而数 32n=(4-1)2n=42n+C 1 ·42n 1·(-1)+?+C 2 n ?1 ·4·(-1)+(-1)2n=(4k+1), 2n 2n

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

∴32n ? {bn},而数列{an}={a2n+1}∪{a2n},∴dn=32n+1 (3)由 32n+1=4·r+3,可知 r=

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

, 4 r(7 ? 4r ? 3) 32n?1 ? 3 32n?1 ? 7 27 27 ∴Br= ? r(2r ? 5) ? ? , Dn ? ? (1 ? 9 n ) ? (9 n ? 1) , 2 4 2 1? 9 8

3

2 n ?1

?3

? Tn ? Br ? Dn ?

T 9 2 n ?1 ? 4 ? 3 2 n ?1 ? 21 27 n 9 11 3 9 ? (9 ? 1) ? ? 3 4 n ? ? 3 2 n ? , (a n ) 4 ? 3 4 n ,? lim n 4 ? n ?? ( a ) 8 8 8 8 4 8 n
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

例 3 设{an}是正数组成的数列,其前 n 项和为 Sn,并且对于所有的自然数 n,an 与 2 的等差中项等于 Sn 与 2 的 等 比 中 项 (1) 写 出 数 列 {an} 的 前 3 项 (2) 求 数 列 {an} 的 通 项 公 式 ( 写 出 推 证 过 程 )(3) 令
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/ http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

a 1 a bn= ( n ?1 ? n ) (n∈N*),求 lim (b1+b2+b3+?+bn-n) n ?? 2 an a n ?1
解析
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

a1 ? 2 ? 2 S1 ,S1=a1, 2 a ?2 a ?2 ∴ 1 ? 2 a1 ,解得 a1=2 当 n=2 时,有 2 ? 2 S 2 ,S2=a1+a2,将 a1=2 代入,整理得(a2- 2 2 a ?2 2)2=16,由 a2>0,解得 a2=6 当 n=3 时,有 3 ? 2S 3 ,S3=a1+a2+a3, 2 将 a1=2,a2=6 代入,整理得(a3-2)2=64,由 a3>0,解得 a3=10 故该数列的前 3 项为 2,6,10 (2)解法一 由(1)猜想数列{an} 有通项公式 an=4n-2 下面用数学归纳法证明{an}的通项公式是 an=4n-2,(n∈N*) ①当 n=1 时,因为 4×1-2=2, ,又在(1)中已求出 a1=2,所以上述结论成立 a ?2 ②假设当 n=k 时,结论成立,即有 ak=4k-2,由题意,有 k ? 2S k ,将 ak=4k-2 代入上式, 2 a ?2 解得 2k= 2 S k ,得 Sk=2k2,由题意,有 k ?1 ? 2S k ?1 ,Sk+1=Sk+ak+1,将 Sk=2k2 代入得 2 ak ?1 ? 2 2 ( ) =2(ak+1+2k2),整理得 ak+12-4ak+1+4-16k2=0,由 ak+1>0,解得 ak+1=2+4k, 2 所以 ak+1=2+4k=4(k+1)-2,即当 n=k+1 时,上述结论成立 根据①②,上述结论对所有的自然数 n∈N* 成立 a ?2 1 1 解法二 由题意知 n ? 2S n ,(n∈N*) 整理得,Sn= (an+2)2,由此得 Sn+1= (an+1+2)2, 2 8 8 1 ∴an+1=Sn+1-Sn= [(an+1+2)2-(an+2)2] 整理得(an+1+an)(an+1-an-4)=0,由题意知 an+1+an≠0, 8 ∴an+1-an=4,即数列{an}为等差数列,其中 a1=2,公差 d=4 ∴an=a1+(n-1)d=2+4(n-1),即通项公式为 an=4n-2 a ?2 a ?2 解法三 由已知得 n ? 2S n ,(n∈N*)①,所以有 n?1 ? 2S n?1 ②, 2 2 S ? Sn ? 2 由②式得 n?1 ? 2S n?1 ,整理得 Sn+1-2 2 · S n?1 +2-Sn=0, 2
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)由题意,当 n=1 时,有
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://w ww .xjktyg.com/w xc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
w xckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

新疆

源头学子 小屋

http://w ww .xjktyg.com/w xc/

特级教师 王新敞
w xckt@126.com

第3页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

解得 S n?1 ? 2 ? S n ,由于数列{an}为正项数列,而 S1 ? 2 ,? S n?1 ? S n ? 2 , 因而 S n?1 ? 2 ? S n ,即{Sn}是以 S1 ? 2 为首项,以 2 为公差的等差数列 所以 S n =
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

2 +(n-1)

?2, (n ? 1) 即 an=4n-2(n∈N*) 2 = 2 n,Sn=2n2,故 an= ? ?S n ? S n?1 ? 4n ? 2, (n ? 2)

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 2n ? 1 2n ? 1 1 1 a 1 a (3)令 cn=bn-1,则 cn= ( n?1 ? n ? 2) ? [( ? 1) ? ( ? 1)] ? ? , 2 an an?1 2 2n ? 1 2n ? 1 2n ? 1 2n ? 1 1 1 1 1 1 1 b1 ? b2 ? ? ? bn ? n ? c1 ? c2 ? ? ? cn ? (1 ? ) ? ( ? ) ? ? ? ( ? ) ? 1? , 3 3 5 2n ? 1 2n ? 1 2n ? 1 1 ? lim(b1 ? b2 ? ? ? bn ? n) ? lim(1 ? ) ? 1. n ?? n ?? 2n ? 1
学生巩固练习 1
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1? i n ) ,(n∈N*),记 Sn=|z2-z1|+|z3-z2|+?+|zn+1-zn|,则 lim Sn=_________ n ?? 2 2 作边长为 a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切 圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________ 3 数列{an}满足 a1=2,对于任意的 n∈N*都有 an>0,且(n+1)an2+an·an+1-nan+12=0,又知数列{bn}的 - 通项为 bn=2n 1+1 (1)求数列{an}的通项 an 及它的前 n 项和 Sn;(2)求数列{bn}的前 n 项和 Tn;(3)猜想 Sn 与 Tn 的大小关系,并说明理由 4 数列{an}中,a1=8,a4=2 且满足 an+2=2an+1-an,(n∈N*) (1)求数列{an}的通项公式;(2)设 Sn=|a1|
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

设 zn=(

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

+|a2|+?+|an|,求 Sn;(3)设 bn=

1 (n∈N*),Tn=b1+b2+??+bn(n∈N*),是否存在最大的整数 m, 使 n(12 ? a n )
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

得对任意 n∈N*均有 Tn> 5 <-1
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

m 成立?若存在,求出 m 的值;若不存在,说明理由 32 设数列{an}的前 n 项和为 Sn,且 Sn=(m+1)-man 对任意正整数 n 都成立,其中 m 为常数,且 m
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)求证 N*)
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

{an}是等比数列;(2)设数列{an}的公比 q=f(m),数列{bn}满足
n ?? n ??

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

b1=

1 a1,bn=f(bn-1)(n≥2,n∈ 3

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

试问当 m 为何值时, lim (bn ? lg a n ) ? lim 3(b1b2 ? b2 b3 ? ? ? bn ?1bn ) 成立? 6
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

已知数列{bn}是等差数列,b1=1,b1+b2+?+b10=145

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)求数列{bn}的通项 bn; (2)设数列{an}的通项 an=loga(1+

1 )(其中 a>0 且 a≠1),记 Sn 是数列{an}的前 bn

n 项和,试比较 Sn 与 7
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 logabn+1 的大小,并证明你的结论 3 设数列{an}的首项 a1=1,前 n 项和 Sn 满足关系式
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4?)

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)求证

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

数列{an}是等比数列; (2)设数列{an}的公比为 f(t), 作数列{bn}, b1=1,bn=f( 使
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

1 bn ?1

)(n=2,3,4?),

求数列{bn}的通项 bn;(3)求和 参考答案
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

b1b2-b2b3+b3b4-?+b2n-1b2n-b2nb2n+1

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

第4页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 ? i n?1 1 ? i n 2 1.解析 : 设cn ?| z n?1 ? z n |?| ( ) ?( ) |? ( ) n?1 , 2 2 2

1 2 2 [1 ? ( ) n ] 1 ? ( ) n 2 2 ? S n ? c1 ? c2 ? ? ? cn ? 2 ? 2 2? 2 1? 2
? lim S n ?
n??

1 2? 2

?

2? 2 2 答案 ?1? 2 2

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1+

2 2

2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

解析

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

由题意所有正三角形的边长构成等比数列{an},可得 an=

a 2 n ?1

,正三角形的内切圆构成等比数

列{rn},可得 rn=

3 1 3 3? 2 a,?∴这些圆的周长之和 c= lim 2π (r1+r2+?+rn)= a, n ?1 n?? 6 2 2

面积之和 S= lim π (n2+r22+?+rn2)=
n??

? 2 a 答案 9

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

周长之和

3 3 ? π a,面积之和 a2 2 9

3

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com



新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)可解得

an?1 n ,从而 an=2n,有 Sn=n2+n, ? an n ?1

(2)Tn=2n+n-1 (3)Tn-Sn=2n-n2-1,验证可知,n=1 时,T1=S1,n=2 时 T2<S2;n=3 时,T3<S3;n=4 时,T4<S4;n=5 时, T5>S5;n=6 时 T6>S6 猜想当 n≥5 时,Tn>Sn,即 2n>n2+1 可用数学归纳法证明(略) 4 解 (1)由 an+2=2an+1-an ? an+2-an+1=an+1-an 可知{an}成等差数列,?
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

a4 ? a1 =-2,∴an=10-2n 4 ?1 (2)由 an=10-2n≥0 可得 n≤5,当 n≤5 时,Sn=-n2+9n,
d=
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

?? n 2 ? 9 n ? 当 n>5 时,Sn=n2-9n+40,故 Sn= ? 2 ?n ? 9n ? 40 ?
(3)bn=

1? n ? 5 n?5

1 1 1 1 1 ? ? ( ? ) n(12 ? an ) n(2n ? 2) 2 n n ? 1

1 1 1 1 1 1 n m m ?Tn ? b1 ? b2 ? ? ? bn ? [(1 ? ) ? ( ? ) ? ? ? ( ? )] ? ;要使 Tn> 总成立,需 < 2 2 2 3 n n ?1 2(n ? 1) 32 32

1 成立,即 m<8 且 m∈Z,故适合条件的 m 的最大值为 7 4 5 解 (1)由已知 Sn+1=(m+1)-man+1 ? ①, Sn=(m+1)-man ②, 由①-②,得 an+1=man-man+1,即(m+1)an+1=man 对任意正整数 n 都成立 ∵m 为常数,且 m<-1
T1=
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/



an?1 a m ,即{ n }为等比数列 ? an m ?1 a n ?1

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(2)当 n=1 时,a1=m+1-ma1,∴a1=1,从而 b1=
第5页
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

1 3

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

由(1)知 q=f(m)=

b m ,∴bn=f(bn-1)= n?1 (n∈N*,且 n≥2) bn?1 ? 1 m ?1



1 1 1 1 ,即 ?1? ? ?1, bn bn?1 bn bn?1 1 }为等差数列 bn


∴{

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 =3+(n-1)=n+2, bn

? bn ?

1 (n∈N*) n?2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

? an ? (

m n?1 n ?1 m m ) ,? lim(bn ? lg an ) ? lim[ lg ] ? lg , n ?? n ?? n ? 2 m ?1 m ?1 m ?1 1 1 1 1 1 1 而lim3(b1b2 ? b2b3 ? ? ? bn?1bn ) ? lim3( ? ? ? ? ? ? ? ) ?1 n ?? n ?? 3 4 4 5 n ?1 n ? 2 m m 10 由题意知 lg ? 1,? ? 10,? m ? ? m ?1 m ?1 9
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

6

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com



新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)设数列{bn}的公差为 d,由题意得

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

?b1 ? 1 ? ? 10(10 ? 1) d ? 145 ?10b1 ? 2 ?

解得 b1=1,d=3,∴bn=3n-2

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 1 )+?+loga(1+ ) 4 3n ? 2 1 1 1 =loga[(1+1)(1+ )?(1+ )] , logabn+1=loga 3 3n ? 1 4 3n ? 2 3 1 因此要比较 Sn 与 logabn+1 的大小, 3 1 1 可先比较(1+1)(1+ )?(1+ )与 3 3n ? 1 的大小, 4 3n ? 2
(2)由 bn=3n-2,知 Sn=loga(1+1)+loga(1+ 取 n=1 时,有(1+1)> 3 3 ? 1 ? 1

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 )> 3 3 ? 2 ? 1 ? 4 1 1 由此推测(1+1)(1+ )?(1+ )> 3 3n ? 1 ① 4 3n ? 2 若①式成立,则由对数函数性质可判定 1 当 a>1 时,Sn> logabn+1, ② 3 1 当 0<a<1 时,Sn< logabn+1, ③ 3 下面用数学归纳法证明①式 (ⅰ)当 n=1 时,已验证①式成立 (ⅱ)假设当 n=k 时(k≥1) ,①式成立,即 1 1 (1 ? 1)(1 ? )?(1 ? ) ? 3 3k ? 1 那么当 n=k+1 时, 4 3k ? 2
取 n=2 时,有(1+1)(1+
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

第6页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

3 1 1 1 1 3k ? 1 (1 ? 1)(1 ? )? (1 ? )(1 ? ) ? 3 3k ? 1(1 ? )? (3k ? 2). 4 3k ? 2 3(k ? 1) ? 2 3k ? 1 3k ? 1

3

?[

3k ? 1 (3k ? 2) 2 ? (3k ? 4)(3k ? 1) 2 (3k ? 2)]2 ? [ 3 3k ? 4]3 ? 3k ? 1 (3k ? 1) 2

?

3 9k ? 4 3k ? 1 ? 0,? (3k ? 2) ? 3 3k ? 4 ? 3 3(k ? 1) ? 1 2 (3k ? 1) 3k ? 1

1 1 1 因而(1 ? 1)(1 ? )?(1 ? )(1 ? ) ? 3 3(k ? 1) ? 1 4 3k ? 2 3k ? 1
这就是说①式当 n=k+1 时也成立 由(ⅰ)(ⅱ)可知①式对任何正整数 n 都成立
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

由此证得 7
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com



新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 1 logabn+1;当 0<a<1 时,Sn< logabn+1 ? 3 3 (1)由 S1=a1=1,S2=1+a2,得 3t(1+a2)-(2t+3)=3t
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

当 a>1 时,Sn>

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

∴a2=

2t ? 3 a2 2t ? 3 , ? 3t a1 3t

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

又 3tSn-(2t+3)Sn-1=3t,①3tSn-1-(2t+3)Sn-2=3t②

①-②得 3tan-(2t+3)an-1=0 ∴
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

an 2t ? 3 2t ? 3 ,n=2,3,4?,所以{an}是一个首项为 1 公比为 的等比数列; ? an?1 3t 3t

(2)由 f(t)=

2t ? 3 2 1 2 1 = ? ,得 bn=f( )= +bn-1 ? bn?1 3 3t 3 t 2 的等差数列 3
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

可见{bn}是一个首项为 1,公差为 (3)由 bn=

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

于是 bn=1+

2 2n ? 1 (n-1)= ; 3 3

2n ? 1 ,可知 3 5 4 ,公差均为 的等差数列, 3 3

{b2n-1}和{b2n}是首项分别为 1 和 于是 b2n=

4n ? 1 ,∴b1b2-b2b3+b3b4-b4b5+?+b2n-1b2n-b2nb2n+1=b2(b1-b3)+b4(b3-b5)+?+b2n(b2n-1-b2n+1) 3 4 4 1 5 4n ? 1 4 2 =- (b2+b4+?+b2n)=- · n( + )=- (2n +3n) 3 3 2 3 9 3
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

第7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

共7页

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com


相关文章:
数列求和优秀教案
教学环节. 本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法...1 知识与技能目标 掌握裂项相消法解决数列求和问题的基本思路、方法和适用范围。...
2015高考数学专题复习教案:数列的通项公式与求和的常用方法
2015高考数学专题复习教案:数列的通项公式与求和的常用方法_高三数学_数学_高中教育_教育专区。高考要求 数列是函数概念的继续和延伸, 数列的通项公式及前 n 项和...
数列通项公式求和的常用方法
数列通项公式求和的常用方法_数学_高中教育_教育专区。数列通项公式求和的常用方法 求递推数列通项公式的常用方法一 公式法例一 已知无穷数列 ?a n ? 的前 n...
数列通项公式及数列求和经典课例
an ? 的通项公式的方法: 累加法、 累乘法、 配凑构造新数列法; ⑶ 掌握两类典型的数列求和方法:错位相减法、裂项相消法。 2、过程与方法 通过各种方法的...
常见数列求和教案(重点)
教学目标 一、 知识与技能 1.复习等差和等比数列的前 n 项和公式、回忆公式推导过程所用倒序想加和错位相减 的思想方法,及用数列求和公式求和时,应弄清基本量...
求数列通项公式及求和的基本方法
数列通项公式及求和的基本方法_高一数学_数学_高中教育_教育专区。求数列通项公式及求和的基本方法 1. 公式法:利用熟知的的公式求通项公式的方法称为公式法,...
12.数列的通项公式与求和的常用方法教案
数列的通项公式求和的常用方法(教案) 数列的通项公式求和的常用方法(教案)新新新 源源源源源源新源 源 新新源 源源源源源源源源 源特 特特特特特 特...
答案 数列通项公式和求和的基本方法与技巧
答案 数列通项公式求和的基本方法与技巧_高一数学_数学_高中教育_教育专区。数列通项公式的求法一 求数列通项公式 an 常用方法 数列满足的递推公式 由 S n ...
数列通项公式及求和常用方法
数列通项公式及求和常用方法一、观察法 例 1:根据数列前 4 项,写出它的一个通项公式: (1)9,99,999,9999,…(3) 1, 2 3 , 1 2 , 2 5 ,? (2...
数列求和的常见方法(同步辅导教案)
数列求和的常见方法(同步辅导教案)_数学_高中教育_教育专区。★ 学好数学“三步...本题主要考察了等比数列的通项公式与前 n 项和公式,属中档题 3.数列 {an ...
更多相关标签: