当前位置:首页 >> 数学 >>

高一数学必修一知识点总结


高一数学必修 1 各章知识点总结 第一章 集合与函数概念 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由 HAPPY 的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ ? } 如:{我校的篮球队员},{太平洋,大

西 洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 ? 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集 Z 有理数集 Q 实数集 R 1) 列举法:{a,b,c??} 2) 描述法: 将集合中的元素的公共属性描述出来, 写在大括号内 表示集合的方法。{x?R| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 2 (3) 空集 不含任何元素的集合 例:{x|x =-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: A ? B 有两种可能(1)A 是 B 的一部分, ; (2)A 与 B 是同 一集合。

?B 反之: 集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作 A ?

?A 或 B? 2. “相等”关系:A=B (5≥5,且 5≤5,则 5=5) 2 实例: 设 A={x|x -1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A?A ②真子集:如果 A?B,且 A? B 那就说集合 A 是集合 B 的真子集,记
作 A B(或 B A) ③如果 A?B, B?C ,那么 A?C ④ 如果 A?B 同时 B?A 那么 A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 n n-1 ? 有 n 个元素的集合,含有 2 个子集,2 个真子集

第 1 页 共 7 页

三、集合的运算 运算 交 集 类型 定 义 由所有属于 A 且属 于 B 的元素所组成 的集合,叫做 A,B 的 交集. 记作 A ? B (读 作‘ A 交 B ’ ) ,即 A ? B={x|x ? A,且 x ? B} . 韦 恩 图 示 性









由所有属于集合 A 或 属于集合 B 的元素所 组成的集合, 叫做 A,B 的并集.记作:A ? B (读作‘A 并 B’ ) ,即 A ? B ={x|x ? A ,或 x ? B}).

设 S 是一个集合,A 是 S 的一个子集,由 S 中 所有不属于 A 的元素组 成的集合,叫做 S 中子 集 A 的补集(或余集) 记作 C S A ,即 CSA= {x | x ? S , 且x ? A} S

A

B

A

B

A

图1

图2



A ? A=A A ? Φ =Φ A ? B=B ? A A? B?A A? B?B

A ? A=A A ? Φ =A A ? B=B ? A A? B ?A A? B ?B

(CuA) ? (CuB) = Cu (A ? B) (CuA) ? (CuB) = Cu(A ? B) A ? (CuA)=U A ? (CuA)= Φ .

二、函数的有关概念 1.函数的概念:设 A、B 是非空的数集,如果按照某个确定的对 应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一 确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数.记作: y=f(x),x∈A.其中,x 叫做自变量,x 的 取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数 值,函数值的集合{f(x)| x∈A }叫做函数的值域. 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 4.映射 一般地,设 A、B 是两个非空的集合,如果按某一个确定的对
第 2 页 共 7 页

应法则 f,使对于集合 A 中的任意一个元素 x,在集合 B 中都有唯 一确定的元素 y 与之对应,那么就称对应 f:A ? B 为从集合 A 到 集合 B 的一个映射。记作“f(对应关系) :A(原象) ? B(象) ” 对于映射 f:A→B 来说,则应满足: (1)集合 A 中的每一个元素, 在集合 B 中都有象, 并且象是唯一的; (2)集合 A 中不同的元素,在集合 B 中对应的象可以是同一个; (3)不要求集合 B 中的每一个元素在集合 A 中都有原象。 5.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集, 值域是各段值域的并 集. 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数 y=f(x)的定义域为 I, 如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2),那 么就说 f(x)在区间 D 上是增函数.区间 D 称为 y=f(x)的单调增区 间. 如果对于区间 D 上的任意两个自变量的值 x1,x2,当 x1<x2 时, 都有 f(x1)>f(x2),那么就说 f(x)在这个区间上是减函数.区间 D 称为 y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数 y=f(x) 在某个区间是增函数或减函数,那么说函数 y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数 的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 1 任取 x1,x2∈D,且 x1<x2; ○ 2 作差 f(x1)-f(x2); ○ 3 变形(通常是因式分解和配方) ; ○ 4 定号(即判断差 f(x1)-f(x2)的正负) ; ○ 5 下结论(指出函数 f(x)在给定的区间 D 上的单调性) . ○ (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数 f[g(x)]的单调性与构成它的函数 u=g(x), y=f(u)的 单调性密切相关,其规律: “同增异减” 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数 f(x) 的定义域内的任意一个 x ,都有 f( - x)=f(x),那么 f(x)就叫做偶函数. (2) .奇函数
第 3 页 共 7 页

一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)= —f(x),那么 f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于 y 轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 1 首先确定函数的定义域,并判断其是否关于原点对称; ○ 2 确定 f(-x)与 f(x)的关系; ○ 3 作出相应结论:若 f(-x) = f(x) 或 f(-x)-f(x) = 0, ○ 则 f(x)是偶函数;若 f(-x) =-f(x) 或 f(-x)+f(x) = 0,则 f(x)是奇函数.

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1. 根式的概念: 一般地, 如果 x ? a , 那么 x 叫做 a 的 n 次方根, * 其中 n >1,且 n ∈ N .
n

?

负数没有偶次方根;0 的任何次方根都是 0,记作 n 0 ? 0 。
n n

当 n 是奇数时, a

?a (a ? 0) n n ?a, 当 n 是偶数时, a ?| a |? ? ?? a (a ? 0)

2.分数指数幂 正数的分数指数幂的意义,规定:

a ? n a m (a ? 0, m, n ? N * , n ? 1)
a
m ? n

m n



?

1 a
r

m n

?

1
n

a

m

(a ? 0, m, n ? N * , n ? 1)

? 0 的正分数指数幂等于 0,0 的负分数指数幂没有意义 3.实数指数幂的运算性质 (1) a · a ? a
r r ?s

(a ? 0, r, s ? R) ; (a ? 0, r, s ? R) ;

(2) (a ) ? a
r s r

rs r s

(3) (ab) ? a a (二)指数函数及其性质 1、指数函数的概念:一般地,函数 y ? a (a ? 0, 且a ? 1) 叫做指 数函数,其中 x 是自变量,函数的定义域为 R. 注意:指数函数的底数的取值范围,底数不能是负数、零和 1.
x

(a ? 0, r, s ? R) .

第 4 页 共 7 页

2、指数函数的图象和性质 a>1
6 5

0<a<1
6 5

4

4

3

3

2

2

1

1

1

1

-4

-2

0
-1

2

4

6

-4

-2

0
-1

2

4

6

定义域 R 值域 y>0 在 R 上单调递增 非奇非偶函数 函数图象都过定 点(0,1)

定义域 R 值域 y>0 在 R 上单调递减 非奇非偶函数 函数图象都过定 点(0,1)

注意:利用函数的单调性,结合图象还可以看出: (1) 在[a,b]上,f ( x ) ? a (a ? 0且a ? 1) 值域是 [f (a ), f (b)] 或
x

[f (b), f (a )] ; (2) 若 x ? 0, 则 f ( x ) ? 1 ;f ( x ) 取遍所有正数当且仅当 x ? R ; x (3)对于指数函数 f ( x ) ? a (a ? 0且a ? 1) ,总有 f (1) ? a ;
二、对数函数 (一)对数 1. 对数的概念: 一般地, 如果 a ? N (a ? 0, a ? 1) , 那么数 x 叫
x

做以 .a 为底 ..N 的对数,记作: x ? log a N ( a — 底数, N — 真 数, log a N — 对数式) 说明:○ 1 注意底数的限制 a ? 0 ,且 a ? 1 ; 2 a ? N ? log a N ? x ; ○ 3 注意对数的书写格式. ○ 两个重要对数: 1 常用对数:以 10 为底的对数 lg N ; ○
x

loga N

2 自然对数:以无理数 e ? 2.71828 ?为底的对数的对数 ln N . ○ ? 指数式与对数式的互化 幂值 真数

a b = N ? log a N = b
底数 指数 对数
第 5 页 共 7 页

(二)对数的运算性质 如果 a ? 0 ,且 a ? 1 , M ? 0 , N ? 0 ,那么: 1 log a ( M · N ) ? log a M + log a N ; ○

M ? log a M - log a N ; N 3 log a M n ? n log a M (n ? R) . ○
2 log a ○ 注意:换底公式

log a b ?

log c b log c a

(a ? 0, 且 a ? 1 ;c ? 0 , 且 c ? 1 ;b ? 0 ) .

利用换底公式推导下面的结论 (1) log a m b n ?

1 n (2) log a b ? . log a b ; log b a m

(二)对数函数 1、对数函数的概念:函数 y ? log a x(a ? 0 ,且 a ? 1) 叫做对数 函数,其中 x 是自变量,函数的定义域是(0,+∞) . 注意:○ 1 对数函数的定义与指数函数类似,都是形式定义,注意 辨别。如: y ? 2 log 2 x , y ? log 5 x 都不是对数函数,而只能称
5

其为对数型函数. 2 对数函数对底数的限制: (a ? 0 ,且 a ? 1) . ○ 2、对数函数的性质: a>1 0<a<1
3 3 2.5 2.5 2 2 1.5 1.5

1
-1

1

1
1

1

0.5

0.5

0

-0.5

1

2

3

4

5

6

7

8

-1

0

1

-0.5

1

2

3

4

5

6

7

8

-1

-1

-1.5

-1.5

-2

-2

-2.5

-2.5

定义域 x>0 值域为 R 在 R 上递增 函数图象都过 定点(1,0) (三)幂函数

定义域 x>0 值域为 R 在 R 上递减 函数图象都过定点 (1,0)

1、 幂函数定义: 一般地, 形如 y ? x (a ? R) 的函数称为幂函数, 其中 ? 为常数. 2、幂函数性质归纳. (1) 所有的幂函数在 (0, +∞) 都有定义并且图象都过点 (1, 1) ; (2)? ? 0 时,幂函数的图象通过原点,并且在区间 [0,??) 上是 增函数. 特别地, 当 ? ? 1时, 幂函数的图象下凸; 当 0 ? ? ? 1时, 幂函数的图象上凸;
第 6 页 共 7 页

?

(3)? ? 0 时,幂函数的图象在区间 (0,??) 上是减函数.在第一 象限内, 当 x 从右边趋向原点时, 图象在 y 轴右方无限地逼近 y 轴 正半轴,当 x 趋于 ? ? 时,图象在 x 轴上方无限地逼近 x 轴正半 轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 y ? f ( x)( x ? D) ,把使 f ( x) ? 0 成立的实数 x 叫做函数 y ? f ( x)( x ? D) 的零点。 2、函数零点的意义:函数 y ? f ( x) 的零点就是方程 f ( x) ? 0 实 数根,亦即函数 y ? f ( x) 的图象与 x 轴交点的横坐标。 即:方程 f ( x) ? 0 有实数根 ? 函数 y ? f ( x) 的图象与 x 轴有交 点 ? 函数 y ? f ( x) 有零点. 3、函数零点的求法: 1 (代数法)求方程 f ( x) ? 0 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数 ○

y ? f ( x) 的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点: 二次函数 y ? ax ? bx ? c(a ? 0) .
2

(1)△>0,方程 ax ? bx ? c ? 0 有两不等实根,二次函数的 图象与 x 轴有两个交点,二次函数有两个零点.
2

(2)△=0,方程 ax ? bx ? c ? 0 有两相等实根,二次函数的 图象与 x 轴有一个交点,二次函数有一个二重零点或二阶零点.
2

(3) △<0, 方程 ax ? bx ? c ? 0 无实根, 二次函数的图象与 x 轴无交点,二次函数无零点.
2

第 7 页 共 7 页


相关文章:
高中数学必修1知识点总结及典型题
高中数学必修1知识点总结及典型题_数学_高中教育_教育专区。高一数学必修 1 各章知识点总结 第一章 集合与函数概念 一、集合有关概念 1. 集合的含义 2. 集合...
高中数学必修一知识点总结(全)
高中数学必修一知识点总结(全)_高一数学_数学_高中教育_教育专区。Tel:3119520 第一章 集合与函数概念课时一:集合有关概念 1. 集合的含义:集合为一些确定的、不...
新课标人教A版高一数学必修1知识点总结
高中数学必修 1 知识点第一章 集合与函数概念 一、集合有关概念: 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中...
高一数学必修一知识点总结
高一数学必修一知识点总结_高一数学_数学_高中教育_教育专区。高一数学必修一知识点总结 高一数学必修 1 各章知识点总结 第一章 集合与函数概念 一、集合有关概念...
高一数学必修1各章知识点总结+练习题
高一数学必修1各章知识点总结+练习题_数学_高中教育_教育专区。高一数学必修 1 各章知识点总结 第一章 集合与函数概念 一、集合有关概念 1. 集合的含义 2. ...
高中数学必修一知识归纳整理
高中数学必修一知识归纳整理集合 一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这 些对象的全体构成的集合(或集),构成集合的每个对象叫做这个...
高中数学人教版必修一知识点总结梳理
高中数学人教版必修一知识点总结梳理_高一数学_数学_高中教育_教育专区。知识点总结整理一 集合 1、集合的含义:集合为一些确定的、不同的对象的全体。 2、集合的...
高中数学人教版必修一知识点总结梳理
高中数学人教版必修一知识点总结梳理高中数学人教版必修一知识点总结梳理隐藏>> 第一章 集合与函数概念一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同...
高一数学必修一函数知识点总结
高一数学必修一函数知识点总结_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档高一数学必修一函数知识点总结_数学_高中教育_教育专区。二、函数的有关...
高中数学必修一至必修五知识点总结人教版
高中数学必修 1 至必修 5 知识点总结(复习专用) 人教版 富宁一中 必修 1 第一章 集合与函数概念一、集合有关概念 1、集合的含义:某些指定的对象集在一起就...
更多相关标签:
高一数学必修一 | 高一数学必修1 | 高一数学必修一复习 | 高中数学必修一公式 | 高一数学知识点大全 | 高中理科数学知识点 | 高一数学 | 高一数学必修一函数 |