当前位置:首页 >> 数学 >>

(讲课用)2.3.2


2.3.2 双曲线的简单几何性质 (第1课时)

主讲人:崔艳 单位:杨村三中

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

共同回顾:我们上周都学了什么?

按我共同回顾

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

探究学


曲线 性质 方程

1、类比椭圆的简单几何性质,探究双曲线的简单几何性质? 椭圆 双曲线

x2 y2 ? 2 ? 1(a ? b ? 0) 2 a b
Y
a

x2 y2 ? 2 ? 1(a ? 0, b ? 0) 2 a b
y

图形

F1 O F2 X
F1

B2 A1
o

A2 B1

F2

x

范围
对称性 顶点,轴

? a ? x ? a,?b ? y ? b
对称轴:x轴,y轴 中心:原点 2a (?a,0), (0,?b) 长轴长 短轴长2b

x ≤-a或x ≥a, y ∈R
对称轴:x轴,y轴 中心:原点

(? a,0)
e? c a
e>1,

实轴长2a 虚轴长2b

离心率

c e? a

0<e<1,

探究学习
2、探究如何确定双曲线的开口大小?
y
我们把这两条直线 y ? ?
叫做双曲线的渐近线。

b x a

B2
A1

渐近线的确定:
b a
A2

O B1

x

矩形的对角线

按我看看

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

探究学习
3、椭圆的离心率可以决定椭圆的圆扁程度, 那么双曲线的离心率能决定双曲线的什么几何 特征呢?
y
B2 A1

N Q

M

c e= a

即:e越大,渐近线斜率越大,
b a
A2

O B1

x

其开口越阔.

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

新知总结
标准方程

1、双曲线的简单几何性质:
x2 y2 ? ? 1(a ? 0, b ? 0) a 2 b2
y

y2 x2 ? 2 ? 1(a ? 0, b ? 0) 2 a b
y

图形
F1 o F2 x

o

x

焦点 范围 对称性 顶点,轴 离心率

(-c,0)

(c,0)

(0,-c)

(0,c)

x ≤-a或x ≥a, y ∈ R

y ≤-a或y ≥a, x ∈R
对称轴:x轴,y轴 中心:原点

对称轴:x轴,y轴 中心:原点

(? a,0) 实轴长2a,虚轴长2b
e越大,双曲线开口越大 e>1, e越小,双曲线开口越小

(0,? a)实轴长2a,虚轴长2b
e>1, e越大,开口越大 e越小,开口越小

渐近线

b y ? ? x a

a y ? ? x b

2、等轴双曲线的定义:

实轴和虚轴等长的双曲线叫做等轴双曲线。

y = ±x 等轴双曲线的渐近线方程为 ________________
e= 2 等轴双曲线的离心率为 ________________

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

性质应用

标准方程

x2 y2 ? ?1 16 9
y

y2 x2 ? ?1 16 9

y
F2 x

图形 范围 实轴,虚轴 顶点 焦点 离心率 渐近线

F1

o

o

x

x ≤-4或x ≥4, y ∈ R

y ≤-4或y ≥4, x ∈ R

实轴长:8,虚轴长:6

实轴长:8,虚轴长:6

(?4,0)
(-5,0) (5,0)
5 4 e ?

(0,?4)
(0,-5)
e ?

(0,5)
5 4

y ? ?

3 x 4

y ? ?

4 x 3

拓展提升
2

x2 - y2 = ? x2 2 4 思考:与 4 - y = 1共渐近线的双曲线方程什么特点?___________________

1 x y=± x 2 - y = 1的渐近线方程为__________ 2________ 4 1 2 x y=± x - y 2 = 4的渐近线方程为__________ ________ 2 4 1 2 x y=± x - y 2 = -1的渐近线方程为__________ ________ 2 4 1 x2 2 y=± x - y = -4的渐近线方程为__________ ________ 2 4

x 2 y2 总结:与双曲线 2 - 2 = 1(a > 0, b > 0)共渐近线 a b
x2 y2 2 2 = ? (a > 0, b > 0) a b 的双曲线方程为__________ ___

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

拓展训练
x2 2 求与双曲线 - y = 1的渐近线相同,且过点 (2,3)的双曲线方程。 4

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

性质应用
例2 求顶点在x轴上, 两顶点间距离为 8,离心率 5 e ? 的双曲线的标准方程。 4

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

巩固提升
x2 y2 5 求与椭圆 ? ? 1有公共焦点,且离心率 e? 49 24 4 的双曲线方程。

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

性质应用
x2 y 2 例3已知F1,F2是双曲线 2 ? 2 ? 1(a ? 0, b ? 0)的两个焦点, PQ是 a b ? 经过F1且垂直于x轴的双曲线的弦,如果 ?PF Q ? 90 ,求双曲线 2 的离心率。

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

巩固提升
x2 y 2 已知F1,F2是双曲线 2 ? 2 ? 1(a ? 0, b ? 0)的两焦点,以线段 a b F1 F2为边作正?MF1 F2,若边MF1的中点在双曲线上,则 双曲线 的离心率为__________ _

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

课堂小结

1.双曲线的几何性质

2.双曲线几何性质的简单应用
(1)根据双曲线方程找几何性质问题; (2)根据双曲线几何性质求双曲线的方程问题; (3)简单的求双曲线的离心率问题;

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

思考题
3 若双曲线的渐近线方程 为y = ± x, 且过点( - 2,3),求双曲线的方程。 4

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

温故而知新
1、双曲线的定义?
把平面内与两个定点 F1,F2的距离的差的绝对值等 于 非零常数(小于 F1F2 )的点的轨迹叫做双曲线 。

2、双曲线的标准方程?
x2 y2 焦点在x轴上的双曲线 2 - 2 = 1 a b
y 2 x2 焦点在y轴上的双曲线 2 - 2 = 1 a b

其中a ? 0, b ? 0, a ? b ? c
2 2

2


相关文章:
3.2熔化和凝固(讲课)
(2)这种物质属于___( “晶体”或“非晶体” )( 3 )图中 B 点表示物质处于...2[1].3熔化和凝固(用) 27页 1下载券 10.2《熔化和凝固》说课... 4页...
2.3运用公式法(二)
课课学习目标 题型 2.3 运用公式法(二)授课 编制者 时间 范 云 秋 (...(9)9a2b2–3ab+1 2013.3.28 重点 知识与技能目标:1.使学生会用完全平方...
高中数学(人教版)选修2-3教学设计:3.2 独立性检验的基...
高中数学(人教版)选修2-3教学设计:3.2 独立性检验的基本思想及其初步应用_...加强与现实生活相联系, 从对实际问题的分析中学会利用图形 分析、解决问题及用...
2.3.2运用公式法(二)
硖石一中高效课堂行动工具 八年级数学下册 2.3.2 运用完全平方公式分解因式班级...【创设情境 揭示目标】 2 2 根据学习用平方差公式分解因式的经验和方法,你能...
《2、3、4的乘法口诀》教案2
23、4 的乘法口诀》教案 教学内容 教材第 54、55 页的例 2~例 4。 ...2×1=2 2×2=4 讲解:一组有 3 个气球,就是 1 个 3,1 个 3 可以用...
§2.3.2 双曲线的简单几何性质(3)(上课用讲义)
§2.3.2 双曲线的简单几何性质(3)(上课用讲义)_数学_高中教育_教育专区。江氏秘籍 江苏省海门中学高二数学个性教案 高中数学选修 2-1 第二章 圆锥曲线与方程...
2.3大气的压强(第2课时)_教学设计
2.3大气的压强(第2课时)_教学设计_科学_初中教育_教育专区。大气的压强(第二...并能用这一 关系解释有关现象 2.过程与方法:通过观察与实验,认识气体的压强跟...
2.3指数函数(教师用)
——函数 必修Ⅰ——函数 指数函数(教师用) 2.3 指数函数(教师用) 知能点全解: 知能点全解:知能点一 知能点一:对指数函数定义的理解 指数函数定义的理解...
必修2Uni3(2)教师用新
必修2Uni3(2)教师用新_数学_高中教育_教育专区。高中英语 必修二 Unit 3 Computers 2 知识梳理 1.solve In 1936 my real father…to solve any difficult mat...
八下2.3.2运用公式法 教学设计(于海峰)
会用完全平方公式将多项式分解因式 知识点 1 用完全平方公式分解因式 分解因式 2.3.2 运用公式法(2) 2 2 2 的多项式分解因式的方法, 乘法公式中形如 a ±...
更多相关标签:
李绍光在上海讲课2 | 良田讲课仪v1.2 | 良田讲课仪v1.2软件 | 学霸寝室讲课走红 | 免费初二讲课视频 | 初中英语讲课视频 | 初中化学免费讲课视频 | 高中语文讲课视频 |