当前位置:首页 >> 数学 >>

(讲课用)2.3.2


2.3.2 双曲线的简单几何性质 (第1课时)

主讲人:崔艳 单位:杨村三中

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

共同回顾:我们上周都学了什么?

按我共同回顾

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

探究学


曲线 性质 方程

1、类比椭圆的简单几何性质,探究双曲线的简单几何性质? 椭圆 双曲线

x2 y2 ? 2 ? 1(a ? b ? 0) 2 a b
Y
a

x2 y2 ? 2 ? 1(a ? 0, b ? 0) 2 a b
y

图形

F1 O F2 X
F1

B2 A1
o

A2 B1

F2

x

范围
对称性 顶点,轴

? a ? x ? a,?b ? y ? b
对称轴:x轴,y轴 中心:原点 2a (?a,0), (0,?b) 长轴长 短轴长2b

x ≤-a或x ≥a, y ∈R
对称轴:x轴,y轴 中心:原点

(? a,0)
e? c a
e>1,

实轴长2a 虚轴长2b

离心率

c e? a

0<e<1,

探究学习
2、探究如何确定双曲线的开口大小?
y
我们把这两条直线 y ? ?
叫做双曲线的渐近线。

b x a

B2
A1

渐近线的确定:
b a
A2

O B1

x

矩形的对角线

按我看看

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

探究学习
3、椭圆的离心率可以决定椭圆的圆扁程度, 那么双曲线的离心率能决定双曲线的什么几何 特征呢?
y
B2 A1

N Q

M

c e= a

即:e越大,渐近线斜率越大,
b a
A2

O B1

x

其开口越阔.

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

新知总结
标准方程

1、双曲线的简单几何性质:
x2 y2 ? ? 1(a ? 0, b ? 0) a 2 b2
y

y2 x2 ? 2 ? 1(a ? 0, b ? 0) 2 a b
y

图形
F1 o F2 x

o

x

焦点 范围 对称性 顶点,轴 离心率

(-c,0)

(c,0)

(0,-c)

(0,c)

x ≤-a或x ≥a, y ∈ R

y ≤-a或y ≥a, x ∈R
对称轴:x轴,y轴 中心:原点

对称轴:x轴,y轴 中心:原点

(? a,0) 实轴长2a,虚轴长2b
e越大,双曲线开口越大 e>1, e越小,双曲线开口越小

(0,? a)实轴长2a,虚轴长2b
e>1, e越大,开口越大 e越小,开口越小

渐近线

b y ? ? x a

a y ? ? x b

2、等轴双曲线的定义:

实轴和虚轴等长的双曲线叫做等轴双曲线。

y = ±x 等轴双曲线的渐近线方程为 ________________
e= 2 等轴双曲线的离心率为 ________________

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

性质应用

标准方程

x2 y2 ? ?1 16 9
y

y2 x2 ? ?1 16 9

y
F2 x

图形 范围 实轴,虚轴 顶点 焦点 离心率 渐近线

F1

o

o

x

x ≤-4或x ≥4, y ∈ R

y ≤-4或y ≥4, x ∈ R

实轴长:8,虚轴长:6

实轴长:8,虚轴长:6

(?4,0)
(-5,0) (5,0)
5 4 e ?

(0,?4)
(0,-5)
e ?

(0,5)
5 4

y ? ?

3 x 4

y ? ?

4 x 3

拓展提升
2

x2 - y2 = ? x2 2 4 思考:与 4 - y = 1共渐近线的双曲线方程什么特点?___________________

1 x y=± x 2 - y = 1的渐近线方程为__________ 2________ 4 1 2 x y=± x - y 2 = 4的渐近线方程为__________ ________ 2 4 1 2 x y=± x - y 2 = -1的渐近线方程为__________ ________ 2 4 1 x2 2 y=± x - y = -4的渐近线方程为__________ ________ 2 4

x 2 y2 总结:与双曲线 2 - 2 = 1(a > 0, b > 0)共渐近线 a b
x2 y2 2 2 = ? (a > 0, b > 0) a b 的双曲线方程为__________ ___

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

拓展训练
x2 2 求与双曲线 - y = 1的渐近线相同,且过点 (2,3)的双曲线方程。 4

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

性质应用
例2 求顶点在x轴上, 两顶点间距离为 8,离心率 5 e ? 的双曲线的标准方程。 4

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

巩固提升
x2 y2 5 求与椭圆 ? ? 1有公共焦点,且离心率 e? 49 24 4 的双曲线方程。

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

性质应用
x2 y 2 例3已知F1,F2是双曲线 2 ? 2 ? 1(a ? 0, b ? 0)的两个焦点, PQ是 a b ? 经过F1且垂直于x轴的双曲线的弦,如果 ?PF Q ? 90 ,求双曲线 2 的离心率。

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

巩固提升
x2 y 2 已知F1,F2是双曲线 2 ? 2 ? 1(a ? 0, b ? 0)的两焦点,以线段 a b F1 F2为边作正?MF1 F2,若边MF1的中点在双曲线上,则 双曲线 的离心率为__________ _

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

课堂小结

1.双曲线的几何性质

2.双曲线几何性质的简单应用
(1)根据双曲线方程找几何性质问题; (2)根据双曲线几何性质求双曲线的方程问题; (3)简单的求双曲线的离心率问题;

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

思考题
3 若双曲线的渐近线方程 为y = ± x, 且过点( - 2,3),求双曲线的方程。 4

新知导入 探究学习 新知总结 典例讲解 课堂小结 思考题

温故而知新
1、双曲线的定义?
把平面内与两个定点 F1,F2的距离的差的绝对值等 于 非零常数(小于 F1F2 )的点的轨迹叫做双曲线 。

2、双曲线的标准方程?
x2 y2 焦点在x轴上的双曲线 2 - 2 = 1 a b
y 2 x2 焦点在y轴上的双曲线 2 - 2 = 1 a b

其中a ? 0, b ? 0, a ? b ? c
2 2

2


相关文章:
2.3.2 运用公式法(2) 教案
www.czsx.com.cn 运用公式法( §2.3.2 运用公式法(二)●教学 目标 教学知识点 1.使学生会用完全平方公式分解因式. 2.使学生学习多步骤,多方法的分解因式....
讲课用
讲课用_语文_初中教育_教育专区。1. choose___ (名词)___(过去式)___ 2.perform___ (名词) ___ 3.educate___ (名词)教育 1. choose___ (名词)_...
《名校课堂》第3、4课的参考答案(2)
《名校课堂》第3、4课的参考答案(2)_初二语文_语文_初中教育_教育专区。第 3 课【参考答案】 1.fú jiào lì pú fú yè 袭屏鞠穆巍 2.B(解析:B 项...
第三课第二框(讲课用)
1/2 相关文档推荐 第课第一框讲课用。 暂无评价 25页 免费 第三课第一...___. 2、人的生命独特性最突出表 现在___ 3、人的生命独特性更多表现 在,...
《3.2.3利用数值计算分析数据》片段教学
3.2.3利用数值计算分析数据》片段教学_其它课程_高中教育_教育专区。高一《3...可以用菜单命令来插入函数外,如果我们对函数的用法了解了 之后,我们还可以用手...
2.3.2运用公式法(二)
硖石一中高效课堂行动工具 八年级数学下册 2.3.2 运用完全平方公式分解因式班级...【创设情境 揭示目标】 2 2 根据学习用平方差公式分解因式的经验和方法,你能...
§2.3.2 双曲线的简单几何性质(3)(上课用讲义)
§2.3.2 双曲线的简单几何性质(3)(上课用讲义)_数学_高中教育_教育专区。江氏秘籍 江苏省海门中学高二数学个性教案 高中数学选修 2-1 第二章 圆锥曲线与方程...
(讲课)5.2解方程学案(3)
(讲课)5.2解方程学案(3)_数学_初中教育_教育专区。年课 级题 初一 学科:数学...的解法. 2.掌握解一元一次方程的一般步骤. 学习目标 重难点 学 法 3.在...
【选修2-3】《组合》练习(学生用)
6页 2财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 【选修2-3】《组合》练习(学生用) 隐藏>> 【选修 2-3...
更多相关标签:
良田讲课仪v1.2 | 2年级讲课视频教程 | 良田讲课仪v1.2软件 | 24.2切线长讲课 | 刘素云老师讲课2 | 高中语文讲课视频 | 初中化学免费讲课视频 | 初中英语讲课视频 |