当前位置:首页 >> 数学 >>

圆柱丶圆锥丶圆台和球


圆柱丶圆锥丶圆台和球
知识点一 圆柱
1.定义:以矩形的一边所在的直线为旋转轴,将矩形旋转一周而形成的曲面所围成的几何 体叫做圆柱。 2.元素: (1)轴:旋转轴叫做圆柱的轴; (2)高:在轴上的这条边(或它的长度)叫做圆柱的高; (3)底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面; (4)侧面:不垂直于轴的边旋转而成的曲面叫做圆柱的侧面; (5)母线:无论

旋转到什么位置,不垂直于轴的边叫做圆柱的母线。 3.表示:用表示它的轴的字母表示,如圆柱OO1。 4.性质: (1)圆柱的底面是两个半径相等的圆,圆的半径等于矩形的边的长,两圆所在的平面互相 平行; (2)通过轴的各个截面是叫做轴截面,轴截面是全等的矩形; (3)母线平行且相等,它们都垂直于底面,它们的长等于圆柱的高.

知识点二

圆锥

1.定义:以直角三角形的一条直角边所在的直线为旋转轴,将直角三角形旋转一周而形成 的曲面所围成的几何体叫做圆锥。 2.相关概念: (1)轴:旋转轴叫做圆锥的轴; (2)高:在轴上的这条边(或它的长度)叫做圆锥的高; (3)底面:垂直于轴的边旋转而成的圆面叫做圆锥的底面; (4)侧面:不垂直于轴的边旋转而成的曲面叫做圆锥的侧面; (5)母线:无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线; 3.圆锥的表示方法:用表示它的轴的字母表示,如圆锥 SO。 4.性质: (1)圆锥的底面是一个圆,圆的半径就是直角边的长,底面和轴垂直; (2)平行于底面的截面是圆; (3)通过轴的各个截面是轴截面,各轴截面是全等的等腰三角形; (4)过顶点和底面相交的截面是等腰三角形,如等腰三角形 SAC (5)母线都过顶点且相等,各母线与轴的夹角相等。

知识点三

圆台

1.定义:以直角梯形的一条直角边所在的直线为旋转轴,将直角梯形旋转一周而形 成的曲面所围成的几何体叫做圆台。 2.元素: (1)轴:旋转轴叫做圆台的轴; (2)高:在轴上的这条边(或它的长度)叫做圆台的高; (3)底面:垂直于轴的边旋转而成的圆面叫做圆台的底面; (4)侧面:不垂直于轴的边旋转而成的曲面叫做圆台的侧面; (5)母线:无论旋转到什么位置,不垂直于轴的边都叫做圆台的母线。

3.表示:用表示它的轴的字母表示,如圆台 OO1。 4.性质: (1)圆台的底面是两个半径不等的圆,两圆所在的平面互相平行又都和轴垂直; (2)平行于底面的截面是圆; (3)通过轴的各个截面是轴截面,各轴截面是全等的等腰梯形,如梯形 AA1B1B。 (4)任意两条母线(它们延长后会相交)确定的平面,截圆台所得的截面是等 腰 梯形,如梯形 AA1C1C。 (5)母线都相等,各母线延长后都相交于一点。

知识点四



1.定义:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球。另外 将圆绕直径旋转 180° 度得到的几何体也是球。 2.元素: (1)球面:球面可以看作一个半圆绕着它的直径所在的直线旋转一周形成的曲面,也 可以看作空间中到一个定点的距离等于定长的点的集合; (2)球心:形成球的半圆的圆心叫做球心; (3)半径:连接球面上一点和球心的线段叫球的半径; (4)直径:连接球面上的两点且通过球心的线段叫球的直径; 3.方法:用表示球心的字母表示,如球 O. 4.球的截面性质: (1)球的截面是圆面,球面被经过球心的平面截得的圆叫 做球的大圆,被不经过球心的平面截得的圆叫做球的小圆; (2)球心和截面圆心的连线垂直于截面; (3) r ?

R2 ? d 2 (其中 r 为截面圆半径,R 为球的半径,d 为球心 O 到截面圆的距离,

即 O 到截面圆心 O1 的距离; 5.球面距离:在球面上,两点之间的最短距离就是经过两点的大圆在这两点间的一段劣弧 的长度。这个弧长叫做两点的球面距离。

知识点五

旋转体

由一个平面图形绕着一条直线旋转产生的曲面所围成的几何体叫做旋转体, 这条直线叫 做旋转体的轴。比如常见的旋转体有圆柱、圆锥、圆台和球,其图形如下图所示

题型 1.考查基本概念 例 1.下列命题中正确的是( C ) (A)直角三角形绕一边旋转得到的旋转体是圆锥 (B)夹在圆柱的两个平行截面间的几何体还是一个旋转体

(C)圆锥截去一个小圆锥后剩余部分是圆台 (D)通过圆台侧面上一点,有无数条母线 变式 1.下列命题中,错误的是( B ) (A)圆柱的轴截面是过母线的截面中面积最大的一个 (B)圆锥的轴截面是所有过顶点的截面中面积最大的一个 (C)圆台的所有平行于底面的截面都是圆 (D)圆锥所有的轴截面是全等的等腰三角形 例 2.过球面上任意两点作球大圆,可能的个数是( B ) (A)只有一个 (B)1 个或无数个 (C)无数 (D)以上均不正确 变式 1.有下列说法: ①球的半径是球面上任意一点与球心的连线段; ②球的直径是球面上任意两点间的连线段; ③用一个平面截一个球,得到的是一个圆;④不过球心的截面截得的圆叫做小圆。则正确 命题的序号是 ①④ 题型 2.考查旋转体的构成 例 3.如下图,绕虚线旋转一周后形成的立体图形是由哪些简单几何体构成的。 解:旋转后的图形如图所示:

变式 1.如图,一个直角三角形绕直线! 旋转会形成一个什么图形? 画出所得到的几何体.

题型 3.轴截面问题 例 4.已知圆锥的底面半径为 r,高为 H,正方体 ABCD-A1B1C1D1 内接于圆锥,求这个正 方体的棱长. 解:过内接正方体的一组对棱作圆锥的轴截面,如图所示: 设圆锥内接正方体的棱长为 x, 则在轴截面中, 正方体 ACC1A1 的对角面 的一组邻边的长分别为 x 和 2 x,

即圆锥内接正方体的棱长为

2rh 2r ? 2r

例 5 圆台的两底面面积分别为 1、49,平行于底面的截面面积的 2 倍等于两 底面面积之和,求圆台的高被截面分成的两线段的比。 解:将圆台还原成圆锥,其轴截面如图所示, 设 O,O1,O2 分别是圆台下底面、截面和上底面的圆心,V 是还原成的圆锥 的顶点,并 VO2=h,O1O2=h2,O1O=h1,

即圆台的高被截面所截成的两线段的比为 1:2. 变式 1. 如果过圆锥顶点的截面面积最大的为轴截面, 圆锥侧面展开图的圆心角为 α, 则α 的 取值范围是( D ) (A)(0,

? ) 2

(B)(0,π)

(C)(0,

? ] 2

(D)(0, 2 π]

题型 4.圆柱、圆锥、圆台侧面上的最短距离问题 例 6.圆台上、下底面半径分别为 5cm,10cm,母线长为 20cm,从母线 AB 的中点 M 拉一 条细绳,围绕圆台侧面转至下底面的 B 点,求 BM 间细绳的最短长度. 解:如图,还台为锥,沿 BA 所在母线将其展开,易知最短长度即为线段 BM 的长度, 设圆锥顶点 S,△SBC 是其轴截面

变式 1.已知圆锥的底面半径为 10cm,母线为 30cm,由底面圆周上一点绕侧面一周回到原来 位置的最短线路的长度是多少?30 3 cm

题型 5. 球心到截面的距离 例 7. 在半径为 25cm 的球内有一个截面,它的面积是 49cm2,求球心到这个截面的距离. 解:设球半径为R,截面圆的半径为r,球心到截面的距离为d,如图所示

变式 1.在半径为 30cm 的球面上有三个点,它们间的距离分别是 20cm、12cm 和 16cm,求 过这三个点的平面与球心的距离。 20 2 cm

题型 6 球面距离的计算问题 例 8.设地球的半径为 R,在北纬 45° 圈上有两个点 A、B. A 在西经 40° ,B 在东经 50° ,求 A、 B 两点间纬线圈的劣弧长及 A、B 两点间的球面距离. 解:如图,设 45° 纬线圈的圆心为 O1,地球的中心为 O, 则∠AO1B=90° ,又 OO1⊥圆 O1 所在的平面,

巩固练习:
1.过圆锥顶点作一截面,则面积最大的截面( C ) (A)是轴截面 (B)是等腰三角形

(C)是轴截面或等腰直角三角形

(D)以上答案都不是

2.圆锥母线长为 l,侧面展开图圆心角的正弦值为

3 ,则高等于( D ) 2
(D)

(A)

2 2 l 3

(B)

3 l 2

(C)

35 l 6

35 2 2 l l或 6 3

3.作一个圆柱的内接正三棱柱,又作这个三棱柱的内切圆柱,那么这两个圆柱的半径之比 为( A ) (A)2:1 (B)3:2 (C) 2 :1 (D)2: 3

4.圆锥母线长为 8,底半径为 2,A 为底面圆周上一点,从 A 出发将一绳子绕圆锥侧面一周 后再回到 A,则最短绳长为 8 2 .

5.一个圆台的母线长为 12cm,两底面积分别为 4πcm2 和 25πcm2,求: (1)圆台的高;

3 15

(2)截得此圆台的圆锥的母线长. 20cm

6.一个圆锥的底面半径为 2,高为 6,在其中有一个高为 x 的内接圆柱, (1)用 x 表示圆柱的轴截面面积 S; (2)当 x 为何值时,S 最大? 解:(1) 画出圆柱和圆锥的轴截面,如图,设圆柱的底面半径为 r, 则由三角形相似可得

x 2?r x ? ,解得 r=2- 6 2 3

(2)圆柱的轴截面面积

∴ 当 x=3 时,S 的最大值为 6. 7. 欲作一个上底半径为 4 分米,下底半径为 1 分米,高为 4 分米的圆台形水桶,问应怎 样下料?(不考虑厚度和加工余量)

8. 圆台的侧面展开图是两个同心扇形的差,求扇形的中心角。 解:设圆台的母线长为 l,上、下底面半径分别为 r 和 R,再设截得这个圆台的原圆锥的母线 长为 l+l1, 在侧面展开图中,大扇形的弧长等于圆台下底面圆的周长 2πR,小扇形的弧长等于圆台上底 面圆的周长 2πr,由弧长公式得

两式相减得

9.球半径为 R,在距球心 4R 处有一点光源,所有与球面相切的光线的切点构成球的一个 小圆,求此小圆的面积.

10. 正四面体 ABCD 内接于半径为 R 的球,求正四面体的棱长.

11.正方体内切球和外接球半径的比是( B ) (A)1: 2 (B)1: 3 (C) 2 : 3 (D)1:2

12.球面上有三个点,任意两点的球面距离都等于大圆周长的 周长为 4π,那么这个球的半径为( B ) (A)4 3 (B)2 3 (C)2 (D) 3

1 ,经过这三个点的小圆的 6

13.半径为 10cm 的球被两个平行平面所截,截得的截面的面积分别是 36πcm2,64πcm2 则 这两个平面的距离是 . 2cm 或 14cm 14.半圆以它的直径为旋转轴, 旋转所成的曲面是 A.半球 B.球 C.球面 D.半球面 ( C ) ( C )

15.直角梯形以其较大的底边为旋转轴, 其余各边旋转所得的曲面的几何体可看作 A.一个棱柱叠加一个圆锥 C.一个圆柱叠加一个圆锥 B 一个圆台叠加一个圆锥 D.一个圆柱挖去一圆锥 (

16.线段 y=2x (0≤x≤2)绕 x 轴旋转一周所得的图形是 A.圆锥 C.圆锥的底面 17.给出下列命题: (1)圆柱的任意两条母线互相平行; (2)球上的点与球心距离都相等; B.圆锥面 D.圆柱中挖去一个圆锥

B )

(3)圆锥被平行于底面的平面所截, 得到两个几何体, 其中一个仍然是圆锥, 另一个是圆台. 其中正确命题的个数为 A. 0 B. 1 C. 2 ( C ) D. 3

5.在直角坐标系中有一个直角三角形 OAB , 现将该三角形分别绕 x 轴, y 轴各旋转一周, 得 到两个几何体, 这两个几何体是同一种类型的几何体吗? A O y B x

不是,绕 x 轴旋转一周所得的几何体,为圆柱内挖去一个圆锥,绕 y 轴旋转一周所得的几 何体为圆锥。 6.如图是一个矩形及与之内切的半圆, 则阴影部分绕半圆的直径旋转一周的几何体是由哪几 个简单几何体组成的? 一个圆柱内挖去一个圆锥


相关文章:
圆柱丶圆锥丶圆台和球
圆柱丶圆锥丶圆台和球知识点一 圆柱 1.定义:以矩形的一边所在的直线为旋转轴,将矩形旋转一周而形成的曲面所围成的几何 体叫做圆柱。 2.元素: (1)轴:旋转轴...
圆柱、圆锥、圆台和球
圆柱圆锥圆台和球_高一数学_数学_高中教育_教育专区。圆柱圆锥圆台和球 1.用平面 ? 截半径为 R 的球,截面到球心的距离为 R ,则截面圆的面积为( ...
2、圆柱`圆锥`圆台和球
2、圆柱`圆锥`圆台和球_高一数学_数学_高中教育_教育专区。圆柱`圆锥`圆台和球§1.1.2 圆柱圆锥圆台和球 (总第 2 课时) 教学目标: 1、熟悉圆柱圆锥、圆...
圆柱、圆锥、圆台和球 二
教学重点:球的截面的性质应用,会求球面上两点之间的距离 教学过程: 复习引入 1、圆柱圆锥圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。 2、通过...
《圆柱、圆锥、圆台和球》
球的截面的性质应用,会求球面上两点之间的距离 教学难点: 教学过程方法措施: 主备案复习引入 1、圆柱圆锥圆台,它们分别由矩形、直角三角形、直角梯形旋转...
圆柱、圆锥、圆台和球(3)
圆柱圆锥圆台和球(3)_数学_高中教育_教育专区。必修2专题 圆柱圆锥圆台和球(1) 教学目标:1、圆柱圆锥、圆台概念, 2、掌握圆柱圆锥、圆台的性质 ...
1.1.3 圆柱、圆锥、圆台和球
圆柱圆锥圆台及球的有关概念 例 1、有以下命题: (1)以直角三角形一边为旋转轴,旋转所得的旋转体是圆锥;(2)以直角梯形的一条腰所在直线为 旋转轴,旋转...
圆柱圆锥圆台和球练习
;②以直角梯形一边为旋转轴,旋 转而得的旋转体是圆台;③圆锥圆台底面都是圆;④分别以矩形长和宽所在直线为旋转轴旋转而得的两 个圆柱是两个不同的圆柱。...
《圆柱、圆锥、圆台和球》教案
圆柱圆锥圆台和球》 明书名、 章节、 页码) 新授 课型 一、知识与技能目标:(1)圆柱圆锥圆台和球概念及相关概念; (2)掌握圆柱圆锥圆台和球的...
更多相关标签:
圆柱圆锥圆台和球 | 圆柱圆锥圆台 | 圆柱圆锥圆台和球教案 | 圆台与圆柱的相贯线 | 圆锥 和 圆台 swf | 圆锥圆台体积计算公式 | 圆台算不算圆柱 | 圆锥圆柱齿轮减速器 |