当前位置:首页 >> 数学 >>

优秀教案24-直线的一般式方程


3.2.3

直线的一般式方程

教材分析
本节内容是必修第二册第三章第二节直线的方程的第三课时内容。 本节课是在学习直线的点斜式、 斜截式、 两点式、截距式的基础上,引导学生认识它们的实质,即都是二元一次方程。从而对直线与二元一次方程 的关系进行探究,进而得出直线的一般式方程,这也为下一节学习做好准备,更为我们以后学习曲线方程 做了铺垫。解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容 就是讨论直线的一般式方程,因此是非常重要的内容. 根据教材分析直线方程的一般式是本节课的重点, 但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于 x 和 y 的一次方程的对应关系确定为“了解”层次.由条件选用恰当形式求出直线方程后, 均应统一到一般式.直线的 一般式方程中系数 A、B、C 的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化. 引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式 时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数 A、B、C 的几何意义时,渗透数形结合的数学思想.

课时分配
本节内容用 1 课时的时间完成,主要研究二元一次方程与直线的关系以及直线的一般式方程与其他四 种形式的关系.

教学目标
重点: 直线方程的一般式及各种形式的互化. 难点:在直角坐标系中直线与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化. 知识点:直线的一般式方程及一般式与其他四种形式方程的关系. 能力点:对数学知识的归纳、概括能力和对化归、分类讨论、数形结合等数学思想的应用. 教育点:让学生认识事物之间的普遍联系与互相转化,用联系的观点看问题. 拓展点:数形结合数学思想的应用.

教具准备 课堂模式

多媒体课件、三角板 学案导学、自主探究

一、复习引入
【师生活动】教师给出题目,由学生自主完成. 问题:由下列各条件,写出直线的方程,并画出图形. (1)斜率是 1,经过点 A(1,8) ; (3)经过两点 P (-1,6), P2 (2,9) ; 1 (2)在 x 轴和 y 轴上的截距分别是-7,7; (4) y 轴上的截距是 7,倾斜角是 45° .

【设计意图】复习直线的点斜式、两点式、斜截式、截距式方程的形式及求直线方程的两类条件:一点一 斜率和两点,让学生在巩固旧知的基础上探究新知. 【设计说明】四个题目很基本,所以要求学生独立完成.由于没有学习一般式,可以让学生以任何一种正确 形式表示方程,在画图象的过程中再引导学生考虑将方程化为统一的形式.
1

生:写出直线方程的特殊形式分别为 y - 8 ? x - 1,

y ? 6 x ?1 x y , y ? x?7. ? ? 1, ? ?7 7 9 ? 6 2 ?1

师: 利用计算机动态显示, 发现上述 4 条直线在同一坐标系中重合.那么它们的方程化简后有什么关系呢? 生:均可统一写成: x - y ? 7 ? 0 . 师:原来直线的点斜式、斜截式、两点式、截距式方程都是关于 x、y 的二元一次方程.现在我们考察直线 与二元一次方程的关系.

二、探究新知
【师生活动】教师给出问题,引导学生分析,师生共同完成讨论. 【设计说明】学生对分类讨论思想还不能熟练应用,所以教师引导学生思考问题,给出必须讨论的理由及 讨论的分类依据,逐步引导学生进行正确的分类讨论,掌握这种数学思想. 问题 1:平面直角坐标系中的每一条直线都可以用一个关于 x、y 的二元一次方程表示吗? 【设计意图】讨论每条直线是否对应一个二元一次方程. 师:我们要求一条直线的方程可以利用直线上的一点和它的斜率来表示,那么需要注意什么问题? 生:直线的斜率可能不存在. 师:那么我们就需要分情况来讨论,分几种情况?哪几种? 生:分成直线的斜率存在和不存在两种情况讨论. 学生讨论完成两种情况的讨论,教师提问学生结果,并板书. 生:若直线 l 的斜率存在,设直线 l 上一点 P(x ? , y? ) ,斜率为 k ,那么直线 l 的方程为 y - y? ? k(x - x ? ) . 若直线 l 的斜率不存在,设直线 l 上的一点 P(x ? , y? ) ,那么直线 l 的方程为 x - x ? ? 0 师:这两个方程是不是关于 x, y 的二元一次方程? 生:是的.第二种情况可以看作是方程中 y 的系数为 0 . 问题 2 每一个关于 x, y 的二元一次方程都表示一条直线吗? 【设计意图】讨论每个二元一次方程是否对应一条直线. 师:我们最熟悉的直线方程形式是哪一种? 生:斜截式. 师:那我们来讨论一个二元一次方程能不能化成直线的斜截式方程?转化过程中需要注意什么问题?

(A, 学生讨论变化方程 Ax ? By ? C ? 0, B不同时为0) 为斜截式方程,教师最后纠错并板书讨论过程. (A, 生:方程 Ax ? By ? C ? 0, B不同时为0) 可以变形为 y ? -

A C C x - ,所以它表示过点 (0,- ) ,斜率为 B B B

-

A 的直线. B C .,可以表示一条斜率不存在的直线. A

师:变形过程中系数 B 一定不为 0 吗?你的结论严谨吗? 生:不一定.系数 B 为 0 时,A 一定不为 0 ,方程可以变形为 x ? -

三、理解新知
1.结论:(1)平面直角坐标系内的所有直线的方程都是一个二元一次方程.我们把关于 x, y 的二元一次方程

Ax ? By ? C ? 0, B不同时为0) 叫做直线的一般式方程,简称一般式. (A,
(2)一个二元一次方程就是直角坐标平面上的一条确定的直线.二元一次方程的每一组解都可以看成平面
2

直角坐标系中的一个点的坐标,这个方程的全体解组成的集合,就是坐标满足二元一次方程的全体点的集 合,这些点的集合组成了一条直线. 【设计意图】整理思路,得出结论,完善分类讨论思想的应用. 2.思考:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点? 【设计意图】了解一般式的特征,使学生理解一般式与其他形式的区别. 3.探究:在方程 Ax ? By ? C ? 0, B不同时为0) 中, A,B,C 为何值时,方程表示的直线:①平行 (A, 于 x 轴;②平行于 y 轴;③与 x 轴重合;④与 y 轴重合;⑤经过原点;⑥与两坐标轴都相交 【设计意图】熟悉一般式与斜截式的相互转化,加强对二元一次方程的几何意义的理解.

四、运用新知
4 ,求直线的点斜式、一般式和截距式方程. 3 4 解:由条件可知直线的点斜式方程是: y ? 4 ? - ( x - 6) , 3 x y 化为一般式是: 4x ? 3y - 12 ? 0 ,化为斜截式是: ? ? 1 . 3 4
例 1 已知直线经过点 A(6,-4) ,斜率为 【设计说明】本例题由学生自主完成,让学生对一般式方程有更深刻的理解. 巩固练习:1、课本第 99 页练习 1 2、在 ?ABC 中, A(1 - 4), B(6,6), C(-2,0) ,求: , (1) ?ABC 的平行于 BC 边的中位线的一般方程和截距式方程; (2) BC 边上的中线的一般方程,并化成截距式方程; 【设计意图】练习直线的方程几种形式的相互转化,理解一般式的意义. 例 2 把直线 l 的一般式方程 x ? 2 y ? 6 ? 0 化成斜截式,求出直线 l 的斜率以及它在 x 轴与 y 轴上的截距, 并画出图形。 解:由方程一般式 x ? 2 y ? 6 ? 0 ①,移项,去系数得斜截式 y ?

x ?3② 2

由②知 l 在 y 轴上的截距是 3,又在方程①或②中,令 y ? 0 ,可得 x ? -6 .即直线在 x 轴上的截距是-6. 因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在 x 轴,y 轴上的截距点),过这 两点作出直线 l (图 2).

巩固练习:课本第 100 页练习 2 变式练习:直线 l 过点 P(-6,3) ,且它在 x 轴上的截距是它在 y 轴上的截距的 3 倍,求直线 l 的方程. 答案: x ? 3 y - 3 ? 0或x ? 2 y ? 0 . 【设计意图】让学生在题目中理解直线方程的几何意义,学会利用数形结合的思想解决直线在直角坐标系 中的问题.熟练掌握求解直线方程的条件,及解题方法,会将方程化为一般式.

3

五、课堂小结
师:(1)直线方程的五种形式及其特点.(2)本节课学习了哪些数学思想方法 生:填表 形 式 方程 适用范围 斜率存在 斜率存在 各常数的几何意义 (x1,y1)是直线上一个定点, k 是斜率 k 是斜率,b 是 y 轴上的截距 (x1,y1)、(x2,y2)是直线上两个 定点 a 是 x 轴上的非零截距, b 是 y 轴上的非零截距 当 B≠0 时,-

点斜式 斜截式

y - y1 ? k ( x - x1 )
y ? kx ? b
y ? y1 x ? x1 ? y 2 ? y1 x 2 ? x1

两点式

不与 x轴,y轴 垂直

截距式

x y ? ?1 a b
Ax ? By ? C ? 0

不 与 x轴,y轴 垂直 且不过原点 无

一般式

A C 是斜率,- 是 B B

y 轴上的截距 还学习了分类讨论思想、化归思想、数形结合思想. 【设计意图】使学生对直线方程的理解有一个整体的认识,同时养成良好的学习习惯.

六、布置作业
1.必做作业:课本第 101 页习题 3.2 A 组第 10,11 题 选作作业:课本第 101 页习题 3.2 B 组第 1,4 题 【设计意图】让学生思维由具体问题向含参问题过渡,给学生更多的应用数学思想的空间,分层梯度训练 让学生垒实基础,逐步提高. 2. 课后练习 自主学习丛书 3.2.3

七、教后反思
本节课通过对问题 1 与问题 2 的探究,让每一位学生都能积极主动参与到教学活动中,并且敢于发表 自己的见解,调动了学生学习的兴趣,使学生的主体地位得到充分的体现,也使得本节课的重点和难点得 以突破.但是, 在探究过程中没能把握好时间的安排, 使得未能安排深入性对一般式转化为特殊形式问题的 练习,对知识点的巩固运用形式比较单一.

八、板书设计

4

3.2.3 直线的一般式方程 引入: 例1

问题 1 例2

问题 2 练习 结论

5


相关文章:
直线的一般式方程教案
的直线 5 直线的一般式方程的定义: 关于 x,y 的二元一次方程 ( )叫做 6 在方程 Ax+By+C=0 表示的直线中 ①时,直线平行于 x 轴; ②时,直线平行于 y...
直线的一般式方程教学设计(人教A版)
直线的一般式方程教学设计(人教A版)_高一数学_数学_高中教育_教育专区。适用于人教A版,学案式导学教学课的教学设计。3.2.3 直线的一般式方程教学目标】 1....
直线的一般式方程教案
斜截式, 两点式截距式是有限制条件的. 此 外直线方程一般式要涉及二元一次方程.通过公式的选择与互换,可以培养学生分析问题、 解决问题的能力. 【教学目标】 (...
直线的一般式方程(教案)
直线的一般式方程(教案)_高二数学_数学_高中教育_教育专区。课题:8.2.3 直线的一般式方程 教学目的: 1.理解直线的一般式方程的概念;掌握直线的一般式方程的...
《3.2.3直线的一般式方程》教学案4-教学设计-公开课-优...
《3.2.3直线的一般式方程教学案4-教学设计-公开课-优质课(人教A版必修二精品)_高一数学_数学_高中教育_教育专区。《3.2.3直线的一般式方程教学案4 一...
人教版高中数学必修二《直线的一般式方程》教案
3.2.3 直线的一般式方程 一、教学目标 1、知识与技能 (1)明确直线方程一般式的形式特征; (2)会把直线方程的一般式化为斜截式 ,进而求斜率和截距; (3)会...
《3.2.3直线的一般式方程》教学案2-教学设计-公开课-优...
《3.2.3直线的一般式方程教学案2-教学设计-公开课-优质课(人教A版必修二精品)_高一数学_数学_高中教育_教育专区。《3.2.3直线的一般式方程教学案2 一...
《3.2.3直线的一般式方程》教学案1-教学设计-公开课-优...
《3.2.3直线的一般式方程教学案1-教学设计-公开课-优质课(人教A版必修二精品)_高一数学_数学_高中教育_教育专区。《3.2.3直线的一般式方程教学案1 一...
直线的一般式方程教案
⑵学会分类讨论及掌握讨论的分界点; 3、情感、态度与价值观:体验数学发现和探索的历程,发展创新意识 三、教学重点:直线方程一般式 Ax+By+C=0(A、B 不同时为 ...
直线的一般式方程教案
[教学难点] 1.直线方程一般式 Ax+By+C=0(A、B 不同时为 0)与二元一次方程关系的深入理 解。 2.直线方程一般式 Ax+By+C=0(A、B 不同时为 0)的应用...
更多相关标签: