当前位置:首页 >> 初三数学 >>

上课用-------二次函数复习导学案


二次函数复习导学案
一、课前热身 1、二次函数 y=-(x-1) +3 的图象的顶点坐标是( A、 (-1,3) A、y=(x-1) A、x=4
2 2



B、 (1,3)
2

C、 (-1,-3)
2

D、 (1,-3) )
2 2

2、把二次函数 y=x -2x-1 配方成顶点式为( B、y=(x-1) -2
2

C、y=(x+1) +1 D、y=(x+1) -2 ) D、x=-1
2

3、二次函数 y=x +bx+c 的图象上有两点(3,-8)和(-5,-8) ,此抛物线的对称轴是直线( B、x=3 C、x=-5 4、已知点 A ?1 , y1 ? 、B ? 2 , y 2 、C ?? 2 , y3 ?在函数 y ? 2? x ? 1? ? 小关系是( A、 y1 ? y 2 ? y3 ) 。 B、 y1 ? y3 ? y2 C、 y3 ? y1 ? y 2
2

?

?

1 上,则 y1 、 y 2 、 y3 的大 2
y


D、 y 2 ? y1 ? y3

5、二次函数 y ? ax2 ? bx ? c 的图象如下图, 则方程 ax ? bx ? c ? 0 的解为 当x为 时, ax ? bx ? c ? 0 ;当 x 为
2
2 2

时, ax ? bx ? c ? 0 .
2

?3

0 1

x

6.抛物线 y=2x +6x+5 的对称轴是直线 x=________________. 7.将抛物线 y=x 向左平移 4 个单位后, 再向下平移 2 个单位, 则此时抛物线的解析式是___________。 典例解析 知识梳理 1:a、b、c 符号的判别: 显条件 二次函数 y=ax +bx+c 抛物线开口向上 抛物线开口向下 对称轴在 y 轴左侧 对称轴在 y 轴右侧 对称轴为 y 轴 顶点在 y 轴
2
2

隐条件 a ≠0 a>0 a<0 ab>0 ab<0 (a、b 同号) (a、b 异号) b=0 b=0

顶点在原点 抛物线交 y 轴正半轴 抛物线交 y 轴负半轴 抛物线过原点 抛物线顶点在 x 轴 抛物线 与 x 轴有一个交点 抛物线 与 x 轴有两个交点 抛物线 与 x 轴无交点

b=c=0 c>0 c<0 c=0 △=0 △=0 △>0 △<0

例题 1:二次函数 y ? ax ? bx ? c?a ? 0? 图象如图所示,下面五个代数式:

y x

ab 、 ac 、 a ? b ? c 、 b 2 ? 4ac 、 2a ? b 中,值大于 0 的有(
A、2 B、3 C、4 D、5

)个。
-1

O

1

y?
练 习 1. 已 知 反 比 例 函 数

k x 的图象如右图所示,则二次函数


y

y ? 2kx 2 ? x ? k 2 的图象大致为(
y
y

y

y

O
x

x

O
A

x

O
B

x

O
C

x

O
D

2.二次函数 y ? ax2 ? bx ? c 与一次函数 y ? ax ? c 在同一直角坐标系中图象大致是(

) 。

y O A x
O B
2

y x

y O C x
O D

y x

例题 2:二次函数 y= (m-1)x +2mx+3m-2,则当 m=_________时,其最大值为 0。 练习 1.抛物线 y= -x -2x+m,若其顶点在 x 轴上,则 m=______ ___。 练习 2.二次函数 y=x +ax+4 的图象,若顶点在 y 轴上,则 a=
2 2



2 2 例 3 已知抛物线 y ? ax ? bx ? c 与抛物线 y ? ? x ? 3x ? 7 的形状相同,顶点在直线 x ? 1 上,且

顶点到 x 轴的距离为 5,则此抛物线的解析式为



知识梳理 2:对称抛物线与平移、旋转抛物线的规律: ①对称抛物线的规律

②平移抛物线的规律 ③绕顶点旋转 180 的规律
2 练习 1、形状与抛物线 y ? ? x ? 2 相同,对称轴是 x ? ?2 ,且过点(0,3)的抛物线是( )A、
0

y ? x 2 ? 4x ? 3
C、 y ? ? x ? 4 x ? 3
2

B、 y ? ? x ? 4 x ? 3
2

D、 y ? x ? 4 x ? 3 或 y ? ? x ? 4 x ? 3
2 2

2

知识梳理 3: 二次函数与一元二次方程及不等式的关系 例 4 已知二次函数 y ? ? x ? 2x ? m 的部分图象如右图所示, 则关于 x 的一
2

元二次方程 ? x ? 2 x ? m ? 0 的解为
2



不等式-x +2x+m>0 的解集为
2 练习 1. 如图,直线 y ? x ? m 和抛物线 y ? x ? bx ? c 都

2

y
B

经过点 A(1,0),B(3,2). ⑴ 求 m 的值和抛物线的解析式; (2)求不等式 x ? bx ? c ? x ? m 的解集.
2

(直接写出答案)

O

A

x

知识梳理 4:函数增减性与对称轴的关系
2

例 5:已知点 A(-1,y1),B(-2,y2),在函数 y= -(x-1) +4 的图象上,那么 y1,y2 的大小关系是(用“>”连结) 练习 1.已知点 A(-0.5,y1),B(-1.5,y2),C(2.2,y3)都在函数 y=a(x-1) +k(a<0)的图 象上,那么 y1,y2,y3 的大小关系是(用“>”连结)
2

综合应用 如图,已知抛物线 y=x +bx+c 经过矩形 ABCD 的两个顶点 A、B,AB 平 行于 x 轴,对角线 BD 与抛物线交于点 P, 点 A 的坐标为(0,2),AB=4. (1)求抛物线的解析式; (2)若 S△APO=1.5,求矩形 ABCD 的面积.
2

课后作业
3

1、关于 x 的一元二次方程 x ? x ? n ? 0 无实数根则抛物线 y ? x2 ? x ? n 的顶点在(
2



A.第一象限

B.第二象限 C. 第三象限
2 2

D.第四象限 .

2、如图所示的抛物线是二次函数 y ? ax ? 3x ? a ?1 的图象,那么 a 的值是
2

3、已知二次函数 y ? ax ? bx ? c(a ? 0) 的图象如图所示:你可以得到哪些结论?

第 3 题图 4. 已知函数 y=mx -6x+1(m 是常数) . ⑴求证:不论 m 为何值,该函数的图象都经过 y 轴上的一个定点; ⑵若该函数的图象与 x 轴只有一个交点,求 m 的值.
2

5..如图,二次函数 y= ax +bx+c 的图象与 x 轴交于 a,b 两点,其中点 A(-1,0) , 点 C(0,5) ,点 D(1,8)都在抛物线上,M 为抛物线的顶点。 (1)求抛物线的函数解析式; (2)求直线 CM 的解析式; (3)求△MCB 的面积。 C y M

2

A O

B x

4


相关文章:
二次函数复习导学案讲课版
二次函数复习导学案讲课版_数学_初中教育_教育专区。新人教版九年级数学上册第...个单位,再向上平移 3 个单位可以得到抛物线___的图像。 2.已知 y ? a( ...
二次函数复习导学案讲课版
二次函数复习导学案讲课版_高一数学_数学_高中教育_教育专区。新高一二次函数复习,更快地融入高中 《二次函数》复习学案一、复习目标 1、梳理二次函数相关的知识...
二次函数复习导学案讲课版
二次函数复习导学案讲课版_初三数学_数学_初中教育_教育专区。单位: 平安城中学西校 主备人: 王春梅 九年级《二次函数》复习课导学案一、复习目标 1、梳理二...
二次函数复习导学案_图文
学途教育欢迎您 二次函数复习 一、自学导航: 考点一:二次函数定义: 1. ...二次函数复习导学案(1) 132人阅读 3页 3下载券 二次函数复习导学案讲课.....
二次函数复习导学案
态度决定一切,习惯铸就一生 九年级数学导学案备课时间: 上课时间: 主备教师: 九年级 使用教师: 班级: 课型: 复习 年级审核: 九 学生: 【课题名称】二次函数...
《二次函数》复习导学案
二次函数复习导学案_初三数学_数学_初中教育_教育专区。玉琳中学 2017 年中考复习数学教案 《二次函数》复习 1 二次函数的图象与性质备课时间:3.10 上课...
二次函数复习导学案实用版
二次函数复习导学案实用版_政史地_初中教育_教育专区。二次函数复习一、自学...二次函数复习导学案讲课... 4页 1下载券 二次函数复习课导学案1 2页 1...
《二次函数》复习导学案
《二次函数》复习导学案_初三数学_数学_初中教育_教育专区。初三二次函数复习 《二次函数》复习 二次函数图象与性质 (4)抛物线增减性: 中考考点透析: 1、...
二次函数复习导学案
二次函数复习导学案一、课前热身 1、二次函数 y=-(x-1) +3 图象...二次函数复习导学案讲课... 4页 1下载券 二次函数复习学科导学案 15页 ...
二次函数复习导学案doc
《二次函数》专题复习导学案一、复习目标 1、梳理二次函数相关知识结构,形成...二次函数复习导学案讲课... 4页 1下载券 第26章二次函数复习导学... 14...
更多相关标签: