当前位置:首页 >> 数学 >>

函数的概念(1)新课


函数的概念
(第一课时)

区间的概念

区间的概念
设a,b是两个实数,且a<b,
定义 名称 符号 [a,b] ________ (a,b) ________ [a,b) ________ 几何表示

{x|a≤x≤b} 闭区间 {x|a<x<b} 开区间 左闭右

开区间 左开右 闭区间

{x|a≤x<b}

{x|a<x≤b}

(a,b] ________

无穷大的概念

(1) 实 数 集 R 用 区 间 表 示 为
_______________,∞读作“
(-∞,+∞)

无穷大”或“无穷”,-∞读
作“负无穷大”或“负无穷” ,+∞读作“正无穷大”或“

正无穷”.

x≥a x >a
x≤b x<b

( -∞ ,b]
(a,+∞) (-∞,b) [a,+∞)

(2)无穷区间的表示
定 义 {x|x∈R} {x|x≥a} {x|x>a} {x|x≤a} {x|x<a}

符 号

(-∞,+ ∞)

[a,+∞)

(a,+∞) (-∞,a]

(-∞,a)

想一想 3. 不等式 x + 2 > 3 的解集用区间怎 么表示? 提示:解x+2>3得x>1,即不等

式x+2>3的解集为(1,+∞).

函数的概念:
设A和B是两个非空数集,如果按照某种对应关 系f,使A的任何一个x,在B中都有唯一确定的 f(x)和它对应,那么就称 f:A B为从集 合A到集合B的一个函数.记作:

y ? f (x),x?A
x叫做自变量,x的取值范围A叫做函数的定义域,

与x的值对应的y值叫做函数值. 函数值的集合{f ? x? | x ? A }叫做函数的值域.

问题思考
? 设A={1,2,3},B={1,4,8,9},对应关系是 f:平方。问对应f:A B是否为从A到B 的一个函数? ? 这个函数的定义域是什么?值域C又是 什么?一般情况下,C与B之间有关什么 关系?

下列图象中不能作为函 数y ? f ( x )的 图象的是 (
y
o
x

)
y
o
x

y
o
x

y

o

x

1. 一次函数y=ax+b(a≠0)定义域是

R. 值域是 R.
2.二次函数y=ax2+bx+c (a≠0) 的
定义域是 R. 值域是

当 a > 0 时 ,为 :

当 a < 0 时 ,为 :

问题解决
反比例函数的定义域、对应关系、 值域各是什么?请用函数的定义来描 述。 k
x ? y ? R y ? 0?. ?x ? R x ? 0?值域C ? _________ A ? _________, 反比例函数 y? ( k ? 0)的 定 义 域

对于A中的任意一个x,在C中都有唯一的一个数 k y= (k ? 0)和它对应。 x

例1 已知函数 f ? x ? ?

x?3 ?

(1)求函数的定义域 2 (2)求 f (?3), f ( 3 ) 的值

1 x?2

(3)当a>0时,求 f (a), f (a ?1) 的值

解(1)x ? 3 有意义的实数x的集合是{x|x≥-3} 1 x ? 2 有意义的实数x的集合是{x|x≠-2} 所以 这个函数的定义域就是 {x | x ? ?3} ? {x | x ? ?2} ? {x | x ? ?3, x ? ?2}

例1 已知函数 f ? x ? ?

x?3 ?

(1)求函数的定义域 2 (2)求 f (?3), f ( 3 ) 的值

1 x?2

(3)当a>0时,求 f (a), f (a ?1) 的值
解( 1 ) ? f ( x) ? ?{ x?3? 0 x?2?0 x?3 ? 1 x?2

解得,x ? ?3, 且x ? ?2 ? f ( x)的定义域为 {x | x ? ?3, 且x ? ?2}

(2) f (?3) ? ? 3 ? 3 ?

1 ? ?1 ?3? 2 2 2 1 11 3 3 33 f( )? ?3? ? ? ? ? 2 3 3 3 8 8 3 ?2 3 (3)因为a>0,所以f(a),f(a-1)有意义

1 f (a) ? a ? 3 ? a?2
1 1 f (a ? 1) ? a ? 1 ? 3 ? ? a?2? a ?1 ? 2 a ?1

课堂练习:P19练习1

函数三要素:
定义域 对应关系 值域

函数

*值域是由定义域和对应关系决定的。 *如果两个函数的定义域相同,对应关 系完全一致,这两个函数相等。

例2下列函数哪个与函数y=x相等

(1) y ? (

x)

2

( 2) y ? 3
( 4) y ?

x3
x2

(3) y ?

x2
2

x

y ? ( x ) ? x( x ? 0) ,这个函数与y=x(x∈R) 解(1) 对应一样,定义域不不同,所以和y=x (x∈R)不相等
(2)y ? x3 ? x ( x ? R ) 这个函数和y=x (x∈R) 对应关系一样 ,定义域相同x∈R,所以和y=x (x∈R)相等
3

-x,x<0 定义域相同x ∈R,但是当x<0时,它的对应关系为y=-x 所以和y=x(x∈R)不相等

(3) y

?

x

2

?| x |?

x,x≥0

这个函数和y=x(x∈R)

x2 (4) y ? x
y ?
x2

x

? x

的定义域是{x|x≠0},与函数

y=x(x∈R)的对应关系一样,但是定义域 不同,所以和y=x(x∈R)不相等

课堂练习:P19 练习3

1.本节课探讨了用集合与对应的语言描述 函数的概念,并引入了函数符号y=f(x).
2.突出了函数概念的本质:两个非数集间 的一种确定的对应关系. 3.明确了函数的三个构成要素:定义域、 对应关系和值域.

4.判断函数相等:定义域、对应关系.
5.判断函数相等:定义域、对应关系.

一、举出初中学习的函数的例子(两个以上), 并用集合与对应的语言来描述函数,同时 说出函数的定义域、值域和对应关系.
二、例题变式


相关文章:
《 1.2.1 函数的概念》 教案
这节课我将主要通过对实例 1,2,3 的分析,与同学们起探讨进 行归纳总结引出函数的定义, 解读函数的定义之后再利用定义解释初 中所学习的函数加以巩固,同时...
函数的概念第一课时教案[1]
2012-2013 学年上学期函数的概念课时教案 高一数学备课组教 师课题教学目的教学重点教学难点授课时间 函数的概念课时 张守季课时数 课型 1 新授课 备注 ...
1.2.1 函数的概念(教案)
x 显然,仅用上述函数概念很难回答这些问题。因此,我们需要从新的高度来认识函数概念。 【推进新课】【新知探究】 1、阅读课本引例: (1)炮弹的射高与时间的变化...
2.1 函数的概念 第1 2课时
课时安排 2 课时 教学过程 第 1 课时 函数的概念 导入新课 思路 1.北京时间 2005 年 10 月 12 日 9 时整,万众瞩目的“神舟”六号飞船胜利发射升空,5 ...
函数概念和定义域(适合上新课)
函数概念定义域(适合上新课)_数学_高中教育_教育专区。适合暑假学生上新课 函数概念,定义域,表达式(1)第一部分 第二部分一 定义: 复习和讲解作业(大约 30 ...
新课标必修一示范教案(2.1 函数的概念 第1课时)
新课标必修示范教案(2.1 函数的概念1课时)_数学_高中教育_教育专区。新课标必修示范教案必修 1.2.1 函数的概念 1.2 函数及其表示 1.2.1 函数的...
函数的概念 公开课
北京市昌平职业学校教案教师姓名:于龙 学科组长签字:李群 课程:数学 课题: 3.1.1 函数的概念 课型:讲授课 课时:1 课时 授课地点:汽车小院 授课班级:2013 级...
3.1.1函数的概念 公开课
北京市昌平职业学校教案教师姓名:于龙 学科组长签字:朱晓燕 课程:数学 课题: 3.1.1 函数的概念 课型:讲授课 课时:2 课时 授课地点:南口校区 授课班级:2015 级...
2016必修1函数的概念第一课学生
2016必修1函数的概念第一学生_数学_高中教育_教育专区。知识点一 函数的概念 (1)函数的定义: (2)函数的定义域与值域: 知识点二 函数的三要素 思考 (1)...
必修1 新课标 数学 2.1.1 函数的概念和图象
必修1 新课标 数学 2.1.1 函数的概念和图象_数学_高中教育_教育专区。适用于新课标必修1的教学练习及平时练习,含答案和讲解。2...
更多相关标签:
20.1一次函数的概念 | 1.2.1函数的概念教案 | 1.2.1函数的概念 | 26.1二次函数的概念 | 18.1函数的概念 | 函数的概念 | 函数概念 | 集合与函数概念 |