当前位置:首页 >> 学科竞赛 >>

国际数学奥林匹克(IMO)竞赛试题(第18届)


国际数学奥林匹克(IMO)竞赛试题(第 18 届)
1. 平面上一凸四边形的面积是 32,两对边与一对角线之和为 16,求另外一个对角线的 所有可能的长度. 2. 令 P1(x) = x2 - 2, Pi+1 = P1(Pi(x)), i = 1, 2, 3, ...,求证对任何一个正整数 n,方 程式 Pn(x) = x 的所有根都是互不相同的实数. 3. 一个长方形的箱子可以用单位正方体完全装满, 如果用体积为 2 的正方体来尽量装填, 使得每个边都与箱子的边平行,则恰能装满箱子的 40%,求所有这种箱子的可能尺寸 (长、宽、高) . 4. 试将 1976 分解成一些正整数之和,求这些正整数乘积的最大值,并加以证明. 5. n 是一个正整数,m = 2n, aij = 0、1 或-1 (1 <= i <= n, 1 <= j <= m) .还有 m 个 未知数 x1, x2, ... , xm 满足下面 n 个方程: ai1x1 + ai2x2 + ... + aimxm = 0, 其中 i = 1, 2, ... , n. 求证这 n 个方程有一组不全为 0 的整数解 1, x2, ... , xm) (x 使得|xi|<= m. 6. 一个序列 u0, u1, u2, ... 定义为: u0= 2, u1 = 5/2, un+1 = un(un-12 - 2) - u1,n = 1, 2, ... 求证 [un] = 2(2n - (-1)n)/3, 其中[x]表示不大于 x 的最大整数.


赞助商链接
相关文章:
国际数学奥林匹克(IMO)竞赛试题(第14届)无答案
国际数学奥林匹克(IMO)竞赛试题(第14届)无答案_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 14 届) 1.有十个互不相同的二位数,求证必可...
国际数学奥林匹克(IMO)竞赛试题(第44届)
国际数学奥林匹克(IMO)竞赛试题(第 44 届) 1. 设 A 是集合 S={1, 2, 3, ..., 1000000}的一个 101 元子集,求证: 存在 S 中的 100 个元素 T1 ...
国际数学奥林匹克(IMO)竞赛试题(第23届)
国际数学奥林匹克(IMO)竞赛试题(第 23 届) 1. f(n)是定义在正整数上且取值为非负整数的函数, = 0, f(3) > 0, f(9999) = 3333, f(2) 并对所有...
国际数学奥林匹克(IMO)竞赛试题(第26届)
国际数学奥林匹克(IMO)竞赛试题(第26届)_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 26 届) 1. 圆内接四边形 ABCD, 现有一圆其圆心在...
国际数学奥林匹克(IMO)竞赛试题(第10届)
国际数学奥林匹克(IMO)竞赛试题(第 10 届) 1. 求证有且仅有一个三角形,它的边长为连续整数,有一个角是另外一个角的两倍. 2. 试找出所有的正整数 n,其各...
国际数学奥林匹克(IMO)竞赛试题(第20届)
国际数学奥林匹克(IMO)竞赛试题(第 20 届) 1. m、n 都是正整数且 n>m.如果 1978m 和 1978n 的十进制表示法的末三位数字相同, 试求满足此条件并使 m...
国际数学奥林匹克(IMO)竞赛试题(第47届)
国际数学奥林匹克(IMO)竞赛试题(第47届) 1. △ABC 的内心为I, 三角形内一点P 满足 ∠PBA+∠PCA=∠PBC+∠PCB. 求证, AP ≥AI,而且等号当且仅当P=I ...
国际数学奥林匹克(IMO)竞赛试题(第45届)
国际数学奥林匹克(IMO)竞赛试题(第45届) 1. △ABC 为锐角三角形,AB ≠ AC;以BC为直径的圆分别交AB和AC于M 和N .记 BC中点为O. ∠ BAC和∠ MON的角...
国际数学奥林匹克(IMO)竞赛试题(第29届)
国际数学奥林匹克(IMO)竞赛试题(第29届)_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 29 届) 1. 考虑平面上同一圆心的两个半径分别为 R...
国际数学奥林匹克(IMO)竞赛试题(第42届)
国际数学奥林匹克(IMO)竞赛试题(第 42 届) 1. △ABC 是锐角三角形,其外接圆的圆心是 O.X 是从 A 到 BC 边上垂线的垂足. 已知∠ C≥∠B+30o, 求证:...
更多相关标签: