当前位置:首页 >> 天文/地理 >>

以超音波水浴结合酸萃取进行土壤重金属移除


研究生: 研究生 呂毅平 研究生(外文 研究生 外文): Yi-Ping Lui 外文 論文名稱: 論文名稱 以超音波水浴結合酸萃取進行土壤重金屬移除 論文名稱(外 論文名稱 外 Ultrasonic-Bath-Assisted Acid Extraction in Heavy 文): Metals Contaminated Soils 指導教授: 指導教授 薩支高
土壤清洗是利用萃取劑在土壤顆粒表面進行反應, 若以超音波水浴振動取代傳統往覆式振盪 或攪拌等物理處理過程, 應可提高萃取效率。 本研究目的為探討超音波水浴結合土壤酸萃取 來處理污染土壤之可行性,並找出較佳的超音波水浴操作條件。過程針對不同供試土壤(人 工配製及現地污染土壤)進行超音波水浴酸洗處理,分析超音波水浴酸洗處理之重金屬去除 效率,並以序列萃取來觀察重金屬型態分佈改變之現象。 本研究首先比較傳統與超音波振動酸萃取, 確認超音波水浴之可行性, 發現超音波水浴酸萃 取可在短時間內就達與傳統萃取相同之重金屬去除效果。 經由超音波振動結合水浴加熱處理 後, 除了鎘之外對其他重金屬去除效果都呈現協力作用。 以較佳超音波水浴酸萃取操作條件 (萃取劑為 1.0 N 鹽酸;時間為 60 分鐘;頻率為 25 kHz;功率為 200 W;水浴溫度為 80℃)處理供試土壤, 土壤中鎘、 鉻、 銅、 鎳、 鉛及鋅重金屬去除率分別為: 64-99、 24-59、 74-97、25-100、64-100 及 43-91%。 超音波水浴酸萃取之重金屬去除效率, 與供試土樣之重金屬型態分佈有關係。 供試土樣經超 音波水浴酸萃取後,不同重金屬之各種型態會呈現不同分佈,並發現生物不可利用型態(有 機態、鐵錳氧化態及殘餘態)之重金屬會互相轉換到生物可利用型態(水溶態、交換態及碳酸 鹽態)。不同重金屬的較佳萃取時間依序為:鎘<銅、鉛、鋅<鉻、鎳。超音波水浴酸萃取 在常溫時短時間即對於供試土壤中鎘之萃取效率非常顯著, 使用水浴加熱來增加超音波振動 對鉻及鎳之萃取效率是必要的。 由超音波水浴酸萃取後重金屬型態改變之情形發現, 處理對於生物可利用型態及鐵錳態之去 除率相當顯著,而對殘餘態之低去除率則可藉由改變固液比、試劑濃度、時間及萃取次數改 善。超音波水浴萃取證實為可提供快速、簡單、可靠且有效去除現地污染土中重金屬的技術 之一。 Generally, soil washing technology can be used to extract contaminants from soil particle surface. Using ultrasonic-bath-assisted acid extraction (UBAE) to replace traditional mechanical shaking may improve the removal efficiency of acid extraction. The objective of this study is to investigate the feasibility and optimization of UBAE on heavy metal contaminated soils. Sequential extraction procedures (SEP) were also used to observe the variation of soil heavy metals before and after UBAE. UBAE was confirmed to have high removal efficiency for heavy metals in the beginning of the study. Except Cd, the combination of ultrasonic vibration and bath heating became synergism to other 5 heavy metals. Removal efficiency of

Cd, Cr, Cu, Ni, Pb and Zn in either contaminated or spiked soils under selected conditions (1.0 N HCl; 60 min;25 kHz frequency; 200 W power; as well as 80 ℃ bath temperature) were 64-99%, 24-59%, 74-97%, 25-100%, 64-100% and 43-91% respectively. From the SEP results, the removal efficiency were related to the forms of heavy metals in soils. The bioavailable (water soluble, exchangeable and carbonate) forms and non-bioavailable (organic, Fe-Mn oxide and residual) forms were found to be transferred after UBAE treatment. The time need for better efficiency using UBAE were as follow: Cr>Cu, Pb, Zn, Ni>Cd. For Cd in soil, the efficiency of UBAE is significant at room temperature in a short time. Combination of temperature and ultrasonic treatments were need to increase the acid extraction efficiency for Cr and Ni in soils. After UBAE, the bioavailable and Fe-Mn oxide forms of heavy metals in soils can be significantly removed. Adequate soil-liquid ratio, acid concentration as well as extraction time can improve the removal of residual heavy metals. UBAE was proved to be one of the rapid, easy applied, reliable and effective remediation technology for heavy metal contaminated soils. 土 壤 及 地 下 水 污 染 整 治 網 (2010) , 98 年 6 月 28 日 取 自 http://sgw.epa.gov.tw/public/。 台灣產業服務基金會網 (2010),98 年 6 月 28 日取自 http://www.ftis.org.tw/。 行政院環境保護署 (2010),98 年 6 月 28 日取自 http://www.epa.gov.tw/。 行政院環境保護署環境檢驗所 (2010) 土壤檢測方法,土壤中酸鹼值測定方法 (NIEA S410.61C)、 土壤中陽離子交換容量-醋酸鈉法 (NIEA S202.60A)、 王水消化法 (NIEA S321.63B)、 超音波萃取法 (NIEA M167.00C), 年 6 月 28 日取自 http://www.niea. 99 gov.tw。 宏 濬 儀 器 有 限 公 司 (2010) , 98 年 6 月 28 日 取 自 http://www.hplc.com.tw/index.htm。 周昱銘 (2007) 濕篩分離技術用於現地受重金屬污染土壤之可行性與健康風險評估,國立 屏東科技大學環境工程與科學系碩士論文,第 3-59 頁。 林獻山、張添晉 (2006) 土壤污染與整治復育,高立圖書有限公司,第 205-323 頁。 范千靖 (2005) 以植生萃取法復育重金屬污染土壤之成效評估,國立屏東科技大學環境工 程與科學系碩士論文,第 4-48 頁。 孫婉榕 (2004) 含鎳之土壤及吸附劑熱安定化機制研究,東海大學環境工程與科學研究所 碩士論文,第 2-5 頁。 莊佩祺 (2003) 土壤重金屬污染化合物型態分布之影響因子探討,逢甲大學環境工程與科 學研究所碩士論文,第 57-73 頁。 黃舒瑜 (2003) 土壤重金屬 0.1 N HCl 萃取量與全量濃度之相關性研究, 逢甲大學環境工 程與科學研究所碩士論文,第 16-50 頁。 黃慧秦 (2003) 含鎳之土壤及吸附劑熱安定化機制研究,東海大學環境工程與科學研究所 碩士論文,第 2-3 頁。 郭魁士 (1980) 土壤實驗,中國書局,第 9-15 頁、第 137-140 頁。 郭魁士 (1992) 土壤學,中國圖書,第 182-186,210-214,269-282 頁。 張怡頻 (2005) 以環境友善材料復育受鎘和鉛污染之土壤,國立屏東科技大學環境工程與

科學系碩士論文,第 4-5 頁。 張俊鴻 (2006) 以 EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究,國立中央大學環境 工程研究所碩士論文,第 5-71 頁。 溫一倉 (1999) 以化學萃取配合物裡連續沉澱法復育受鎘、 銅及 鉛污染土壤之研究, 國立 屏東科技大學環境工程與科學系碩士論文,第 59-62 頁。 蔡在唐 (2003) 以電動力法復育受油品污染土壤,國立屏東科技大學環境工程與科學系碩 士論文,第 118-119 頁。 劉仁煜 (2007) 土壤 徑篩分對污染土壤重?屬移除效 之影響, 朝陽科技大學碩士論文, 第 22-32 頁。 歐育憲 (2000) 土壤中重金屬污染物之生物有效性意義研究,逢甲大學環境工程與科學研 究所碩士論文,第 4-31 頁。 鄭振東 (1999) 超音波工程,全華科技圖書股份有限公司,第 1.1-1.17 頁。 顏士欽 (2005) 評估以酸洗及化學萃取法去除土壤中重金屬之可行性及地力影響,國立屏 東科技大學環境工程與科學系碩士論文,第 33-89 頁。 蘇茂生 (2002) 不明廢棄物場址以現地玻璃化法整治之效能研究,國立屏東科技大學環境 工程與科學系碩士論文,第 28-31 頁。 Akkajit, P., Tongcumpou, C., 2010. Fractionation of metals in cadmium contaminated soil: Relation and effect on bioavailable cadmium. Geoderma 156, pp. 126–132. Al-Merey, R., Al-Masri, M. S., Bozou, R., 2002. Cold ultrasonic acid extraction of copper, lead and zinc from soil samples. Analytica Chimica Acta 452, pp. 143–148. Arain, M. B., Kazi, T. G., Jamali, M. K., Baig, J. A., Afridi, H. I., Jalbani, N., Sarfraz, R. A., 2009. Comparison of Different Extraction Approaches for Heavy Metal Partitioning in Sediment Samples. Pedosphere 19(4): pp. 476–485. Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Baig, J. A., 2008. Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. Journal of Hazardous Materials 154, pp. 998–1006. Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Kandhro, G. A., Ansari, R., Sarfraz, R. A., 2008. Hazardous impact of toxic metals on tobacco leaves grown in contaminated soil by ultrasonic assisted pseudo-digestion: Multivariate study. Journal of Hazardous Materials 155, pp. 216–224. Calle, I. D. L., Cabaleiro, N., Lavilla, I., Bendicho, C., 2009. Analytical evaluation of a cup-horn sonoreactor used for ultrasound-assisted extraction of trace metals from troublesome matrices. Spectrochimica Acta Part B 64, pp. 874–883. Chung, H. I., Chun, B. S., Lee, Y. J., 2006. The Combined Electrokinetic and Ultrasonic Remediation of Sand Contaminated with Heavy Metal and Organic Substance. KSCE Journal of Civil Engineering Vol. 10, No. 5, pp. 325–331. Deng, J., Feng, X., Qiu, X., 2009. Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid. Chemical Engineering Journal 152, pp. 177–182. Dermont, G., Bergeron, M., Mercier, G., Richer-Lafleche M., 2008. Soil washing

for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152, pp. 1–31. Elik A., 2007. Ultrasonic-assisted leaching of trace metals from sediments as a function of pH. Talanta 71, pp. 790–794. Güng?r, H., Elik, A., 2007. Comparison of ultrasound-assisted leaching with conventional and acid bomb digestion for determination of metals in sediment samples. Microchemical Journal 86, pp. 65–70. Hristozov, D., Domini, C. E., Kmetov, V., Stefanova, V., Georgieva, D., Canals, A., 2004. Direct ultrasound-assisted extraction of heavy metals from sewage sludge samples for ICP-OES analysis. Analytica Chimica Acta 516, pp. 187–196. Hwang, S-S., Park, J-S., Namkoong,W.,2007. Ultrasonic-Assisted Extraction to Release Heavy Metals from Contaminated Soil. J. Ind. Eng. Chem., Vol. 13, No. 4, pp. 650-656. Huang, W. J., Chen, W. C., Chou, G. C., Chu, S. C., 2004. Chemical Speciation of Amphoteric Ions on Semi-dry Scrubber Residue and Bag-house Ash from MSWI. Journal of the Chinese Chemical Society, 51, pp. 233-237. Isoyama, M., Wada, S. I., 2007. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil. Journal of Hazardous Materials 143, pp. 636–642. Kazi, T. G., Jamali, M. K., Araina, M. B., Afridi, H. I., Jalbani, N., Sarfraz, R. A., Ansari, R., 2009. Evaluation of an ultrasonic acid digestion procedure for total heavy metals determination in environmental and biological samples. Journal of Hazardous Materials 161, pp. 1391–1398. Kazi, T. G., Jamali, M. K., Siddiqui, A., Kazi, G. H., Arain, M. B., Afridi, H. I., 2006. An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere 63, pp. 411–420. Krasnodebska-Ostrega, B., Kaczorowska, M., Golimowski, J., 2006. Ultrasound-Assisted Extraction for the Evaluation of Element Mobility in Bottom Sediment Collected at Mining and Smelting Pb–Zn Ores Area in Poland. Microchim Acta 154, pp. 39–43. Kuo, S., Lai, M. S., Lin, C. W., 2006. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environmental Pollution 144, pp. 918-925. Kyllonen, H., Pirkonen, P., Hintikka, V., Parvinen, P., Gronroos, A., Sekki, H., 2004. Ultrasonically aided mineral processing technique for remediation of soil contaminated by heavy metals. Ultrasonics Sonochemistry 11, pp. 211–216. Madyiwa, S., Chimbari, M., Nyamangara, J., Bangira, C., 2002. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe. Physics and Chemistry of the Earth 27, pp. 747–753. Mason, T. J., Collings, A., Sumel, A., 2004. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrasonics Sonochemistry 11, pp. 205–210. Moutsatsou, A., Gregou, M., Matsas, D., Protonotarios, V., 2006. Washing as a

remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemosphere 63, pp. 1632–1640. ?zkan, M. H., Gürkan, R., ?zkan, A., Ak?ay, M., 2005. Determination of Manganese and Lead in Roadside Soil Samples by FAAS with Ultrasound Assisted Leaching. Journal of Analytical Chemistry, Vol. 60, No. 5, pp. 469–474. Pumure, I., Renton, J. J., Smart, R. B., 2009. Accelerated aqueous leaching of selenium and arsenic from coal associated rock samples with selenium speciation using ultrasound extraction. Environ Geol 56, pp. 985–991. Tessier, A., Campbell, G. C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 51, pp. 844-851. V?is?nen, A., Suontamo, R., Silvonen, J., Rintala, J., 2002. Ultrasound-assisted extraction in the determination of arsenic, cadmium, copper, lead, and silver in contaminated soil samples by inductively coupled plasma atomic emission spectrometry. Anal Bioanal Chem 373, pp. 93–97. Xie, F., Li, H., Ma, Y., Li, C., Cai, T., Huang, Z., Yuan, G., 2009. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation. Journal of Hazardous Materials 170, pp. 430–435.

研究生: 研究生 郭鼎楠 研究生(外文 研究生 外文): Ding-Nan GUO 外文 論文名稱: 論文名稱 電鍍污泥中重金屬快速回收之研究 論文名稱(外 論文名稱 外 The expeditious recovery of heavy metal from 文): electroplating sludge
離子熔液萃取方式是近年來新穎的有效處 重?屬廢水方式之一,處 後重金屬危害量減 少, 因此本研究 用離子熔液作為萃取含重金屬廢水的主要萃取劑, 將以含有不同重金屬之 電鍍污泥加以萃取, 並配合微波及超音波的方式有效縮短處理時間。 因此本研究包含 大 部分, 分別為快速合成離子液體技術探討與快速萃取重金屬之應用技術。 前者包含 微波快 速合成技術、兩段式超音波技術,後者則有微波酸萃技術。 本研究首先以甲基咪唑為原料,在開放式微波下,使用溴丁烷進行季胺化反應,最佳反 應條件為:甲基咪唑:溴丁烷的莫耳比為 1:1,微波功率 240 W,在 90 ℃下反應 2 分鐘, 離子液體第一段產率可達 85%,再以微波進行第二段離子液體合成,產率則可達到 75%。 另使用超音波混合下最佳條件為:超音波兩段式震盪混合在總反應 150 分鐘後,甲基咪唑: 溴丁烷的莫耳比為 10:11,反應溫 85 ℃,振幅 60 %為最佳的條件,產率達到 75%。 以開放式微波合成疏水性離子熔液在與雙硫腙螯合劑搭配萃取情況下研究結果顯示,恆 溫振盪轉數設定在 180 rpm,當體積比為 1:10,離子熔液添加量 1 mL,反應溫度室溫 25 ℃,萃取 3 分鐘,重金屬廢水中重金屬銅萃取率可達 90%,而離子熔液所吸附的重金 屬離子可利用調整不同 pH 使離子熔液與產物分離,具有很好的穩定性,且對環境友好。另 外,以開放式超音波合成疏水性離子熔液在與 EDTA 螯合劑搭配萃取情況下研究結果顯示, 重金屬廢水中重金屬銅之萃取率可達 95%以上。 國內污泥量年年遞增,以化學處理方式頗為費時又耗能,一種嶄新的方法成功地製備奈 米氧化銅。首先,利用酸萃取出銅離子,然後,加入乙二醇/水溶液中,在超音波的條件下 進行反應,再經由微波高溫烘乾得到氧化銅。同時,改變不同的反應條件,如分散劑劑量、 超音波溫度、微波時間,最佳條件-電鍍污泥:硫酸之固液比在 1/20 時,以微波浸提處理 30 分鐘、硫酸濃度 0.5 M 對污泥中重金屬銅溶出率達 90%以上。進一步以超音波震盪 30 分鐘、 微波 30 分鐘, 再添加分散劑 0.1 g 可形成粒徑在 40-50?m 之氧化銅, 並藉由 XRD 鑑定氧化銅的型態及晶格結構。 傳統照相館之廢定顯影液含有銀離子的成分,環保署僅規定集中回收再次處理,而液體 本身含有銀離子,為了不再造成二次污染,本研究將銀離子加以回收再製成奈米銀。一般合 成奈米級粒子做法採用水熱合成法, 時間長達數個小時之久, 其粒徑大小約 30~40 nm 間, 且粒徑大小不易控制,無法形成高均勻性的奈米銀溶液。研究中以超音波合成總時間僅需 40 分鐘,平均粒徑 40-50?m,合成的方式與傳統方法相比可節省近 2/3 時間。將銀適度 奈米化之後,由於表面積大幅提升,衍生出新的功能,使得其應用性大幅增加。 本研究利用離子熔液與螯合劑有效萃取重金屬離子可有效將重金屬抓取 90%以上;另 以微波及超音波方式快速將廢棄物有效回收再製成新製品應用上相當可觀, 同時不論使用微 波或是超音波的方式均可有效的縮短反應時間,增加產量,並減少廢棄物耗用,達到資源回 收再利用目的。

摘要--------------------------- I ABSTRACT----------------------- III 誌謝--------------------------- VI 目錄--------------------------- VII 表目錄------------------------- X 圖目錄------------------------- XI 一、前言----------------------- 1 1.1 研究動機與目的-------------- 1 二、文獻回顧------------------- 4 2.1 電鍍污泥性質---------------- 4 2.1.1 電鍍污泥物化特性--------- 4 2.2 電鍍污泥危害性物質---------- 4 2.3 電鍍污泥重金屬資源化技術-----5 2.4 螯合劑抓取電鍍污泥---------- 5 2.5 微波原理-------------------- 6 2.5.1 微波促進反應------------- 6 2.6 超音波原理------------------ 6 2.6.1 超音波促進反應----------- 9 2.7 離子熔液-------------------- 9 2.7.1 離子熔液合成------------- 11 2.7.2 微波與超音波快速合成離子熔液-----12 2.7.3 離子熔液萃取重金屬離子---------- 17 2.7.4 離子熔液回收再利用-------------- 17 2.8 鐵氧磁體--------------------------- 19 2.8.1 鐵氧磁體原理-------------------- 19 2.8.2 微波鐵氧磁體-------------------- 23 2.8.3 鐵氧磁體應用-------------------- 24 三、實驗方法及分析-------------------- 25 3.1 研究架構--------------------------- 25 3.2 樣品製備--------------------------- 25 3.2.1 微波兩段式快速合成離子熔液及應用在重金屬廢液之萃取--25 3.2.2 超音波離子熔液快速合成及應用在重金屬廢液處理--------26 3.2.3 快速回收銅污泥並製備氧化銅------------------------- 27 3.2.4 兩段式超音波回收銀製備奈米銀的應用----------------- 28 3.3 實驗儀器--------------------------------------------- 29 3.3.1 微波反應器(Microwave) ----------------------------- 29 3.3.2 超音波反應器(Ultrasonic) -------------------------- 29 3.4 樣品分析--------------------------------------------- 29 3.4.1 感應偶和電漿原子發色光譜儀(ICP) ------------------ 29 3.4.2 原子吸收光譜儀(AAS) ------------------------------- 29 3.4.3 X 射線(XRD) ---------------------------------------- 30 3.4.4 傅氏紅外光譜儀(FTIR) ------------------------------ 30 3.4.5 核磁共振技術(NMR) ---------------------------------- 31 四、結果與討論

4-1 開放式微波快速合成離子熔液應用在重金屬廢液之萃取------ 36 4-2 兩段式超音波快速合成離子熔液在重金屬廢液之萃取應用---- 53 4-3 快速回收銅污泥並製備成氧化銅-------------------------- 71 4-4 兩段式超音波回收銀製備成奈米銀的應用----------------- 84 五、結論------------------------------------------------- 95 六、參考文獻--------------------------------------------- 97 七、APPENDIXS AS1 Two-stage synthesis of microwave and ultrasound ionic liquids used in the extraction of copper metal aste------106 八、RESUME AND PUBLICATION-------------------------------116 Ionic liquid extraction method was novel in recent years, the effective processing of one form of heavy metal waste, handling hazardous heavy metals from a decline in this study using ionic liquids as extraction of the main waste water containing heavy metals extraction agent, will contain different heavy metal sludge to be extracted and combined with microwave and ultrasound effective way to shorten the processing time.Therefore, this study includes most of order two, namely, rapid synthesis of ionic liquids technology and rapid extraction of heavy metals in the applied technology. The former contains the order microwave synthesis, two-stage ultrasonic technology, the latter of microwave acid extraction technology and ferrite. In this study first-methylimidazole as the raw material, in an open microwave, the use of butane to quaternary ammonium bromide reaction, the best reaction conditions: molar ratio of 1:1, the microwave power 240W, reaction at 105 ℃ for 2 minutes, ionic liquid yield of 86% for some, and then to carry out the second paragraph of microwave synthesis of ionic liquid, the yield can reach 75%. Under the ultrasonic, taking into account bromobutane may be volatile at room temperature using the heater response manner, using ultrasound to liquid butane with bromine with the heater to full mixing of reactants. Mixed use of ultrasound under the best conditions: ultrasonic two-stage oscillation in the total reaction mixture after 150 minutes, this time for the 10:11 molar ratio, reaction temperature 85 ℃, 60% of the amplitude of the best of conditions, ionic liquid production rate can reach 75% effective. From the results suggest, whether the use of open microwave or ultrasonic, ionic liquids are able to yield more than 70% yield. Microwave synthesis of an open hydrophobic ionic liquids in combination with the chelating agent dithizone extraction case study results show that temperature oscillation rotation set 180 rpm, when the volume ratio of 1:10, ionic liquid dosage 1ml, room temperature 25 ℃, extraction of 3 minutes, heavy metal extraction rate of copper in waste water up to 90%, while the adsorption of ionic liquids to adjust the metal ion can be used to adjust pH to make ionic liquids easily separated from the product, good stability, and environmentally-friendly. In addition, an ultrasonic synthetic hydrophobic ionic liquids in combination with the chelating agent EDTA extraction case study

showed that the extraction rate of heavy metals in waste water up to 95%. Annual increases of domestic sludge, the chemical treatment are always the solution, rather time-consuming and energy, a new method was successfully synthesis prepared CuO nanoplates. For the preparation of CuO nanoplates, Cu sludge were using acid to extract copper ions, prepared by using of CuO powders immersed in ethylene glycol/water solution under ultrasonic conditions, and then drying by microwave high-temperature CuO nanoparticles obtained. The preparation of CuO nanoplates was studied in several experimental factors, for example reactant amount, temperature, reaction time, and capping agent. The optimal condition was found in which the solid/liquid ratio was used at 1/20 and microwave extraction processing 30min, 0.5M sulfuric acid concentration on the dissolution rate of copper sludge by 90%. Extract further to ultrasonic 30min, microwave for 30 minutes, then add 0.1g dispersant to form particle size of 40-50?m copper oxide. The XRD diffraction were employed to characterize composition, morphology, and structure for CuO.Traditional studio set in the waste developer solution containing silver ions in the composition, the current Taiwan EPA only provides centralized recycling for further treatment, but the liquid itself contains silver ions, in order to not cause secondary pollution, recycling will be made of silver ions. General synthesis of nano-silver particles by hydrothermal synthesis approach, as long as 25 to 40 hours long, the particle size between about 30~40nm, and the particle size and difficult to control, not the formation of silver nanoparticles with high uniformity solution. Synthesis of research with ultrasound only 40 minutes total time average diameter 40-50?m, the composition of some savings compared with traditional methods near 1/1.5 hours. Nano silver, after a moderate, due to the smaller particle size, surface area to increase substantially derived from the new features that make the application was increased significantly. In this study, rapid synthesis of ionic liquids and the use of ionic liquid with the effective extraction of copper metal ion chelating agent more than 90%. Other means of microwave irradiation and ultrasound irradiation and then quickly and effectively recover the heavy metal made of nanoparticles copper oxide and nanoparticles silver, effectively shorten the reaction time, increase productivity, and reduce carbon emissions up to the purpose.

(1) Ao, Y. W., Yang, Y. X., Yuan, S. L., Ding, L. H., Chen, G. R., "Preparation of spherical silver particles for solar cell electronic paste with gelatin protection", Materials Chemistry and Physics, 2007, 104, 1, 158-161. (2)Ahosseini, A., Scurto, A. M., "Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects", International Journal of Thermophysics, 2008, 29, 1222-1243. (3)Bohlmann, J. T., Lorch, C. M., Drews, A. and Buchholz, R.., "Microwave High Pressure Thermo-chemical Conversion of Sewage Sludge as An Alternative to Incineration", Chemical Engineering & Technology, 1999, 21, 404-409. (4)Bhushan, M. Khadilkar. and Geeta, L. Rebeiro., "Microwave-Assisted Synthesis of Room-Temperature Ionic Liquid Precursor in Closed Vessel", Organic Process Research & Development, 2002, 6, 826-828. (5)Chou, K. S., Ren, C. Y., "Synthesis of nanosized silver particles by chemical reduction method", Materials Chemistry and Physics, 2000, 64, 3, 241-246. (6)Chandan, Upadhyay., Devabrata, Mishra., Verma, H. C., Anand, S., Das. R.P., "Effect of preparation conditions on formation of nanophase Ni–Zn ferrites through hydrothermal technique", Journal of Magnetism and Magnetic Materials, 2003, 260, 188-194. (7)Chau, J. L. H., Hsu, M. K., Hsieh, C. C., Kao, C. C., "Microwave plasma synthesis of silver nanopowders", Materials Letters, 2005, 59, 905-908. (8)Cravotto, G., Gaudino, E. Calcio., Boffa, L., Lévêque, J. M., Estager, J., Bonrath, W.,"Preparation of Second Generation Ionic Liquids by Efficient Solvent-Free Alkylation of N-Heterocycles with Chloroalkanes", Molecules, 2008, 13, 149-156. (9)Dupont, J., deSouza, R.F., Suarez, P. A. Z., "Ionic Liquid (Molten Salt) Phase Organometallic Catalysis", Chemical Reviews, 2002, 102, 3667-3692. (10)Deetlefs, M.., Seddon, K. R., "Improved preparations of ionic liquids using microwave Irradiation", Green chemistry, 2003, 5, 181–186. (11)Doh, S. G., Kim, E. B., Lee, B. H., Oh. J.H., "Characteristics and synthesis of Cu–Ni ferrite nanopowders by coprecipitation method with ultrasound irradiation", Journal of Magnetism and Magnetic Materials, 2004, 272–276, 2238–2240. (12)Ding, J., Armstrong, D. W., "Chiral ionic liquids: synthesis and applications", Chirality, 2005, 17, 281-292. (13)Estager, J., Lévêque, J. M., Turgis, R., Draye, M., "Neat benzoin condensation in recyclable room-temperature ionic liquids under ultrasonic activation", Tetrahedron Letters, 2007, 48, 755-759.

(14)Foster, A. L., Brown, G. E. Jr., Parks, G. A., "X-ray Absorption Fine-Structure Spectroscopy Study of Photocatalyzed, Heterogeneous As(III) Oxidation on Kaolin and Anatase", Environmental Science & Technology, 1988, 32, 1444. (15)Fredlake, C. P., Crosthwaite, J.M., Hert, D.G., Sudhir, N.V., Aki, K., Brennecke, J.F., "Thermo physical Properties of Imidazolium-Based Ionic Liquids", Journal of Chemical & Engineering Data, 2004, 49, 954-964. (16)Fu, You. Du., Xiao, Hua. Xiao., Gong, Ke. Li., "Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati", Journal of Chromatography A, 2007, 1140, 56–62. (17)Fei, Teng., Wenqing, Yao., Youfei, Zhenga., Yutao, Mac., Yang, Teng., Tongguang, Xub., Shuhui, Liang., Yongfa, Zhu., "Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis", Sensors and Actuators B, 2008, 134, 761–768. (18)Fengchun, Xie., Tingting, Cai., Yang, Ma., Haiying, Li., Chuncheng, Li a., Zhiyuan. Huang., Gaoqing, Yuan., " Recovery of Cu and Fe from Printed Circuit Board waste sludge by ultrasound: Evaluation of industrial application", Journal of Cleaner Production, 2009, 17, 1494–1498. (19)Gibbs, R. J., "Transport phases of transition metals in the Amazon and Yukon rivers", Geological Society of America Bulletin, 1997, 88, 829-843. (20)Gan, Q.,"A Case Study of Microwave Processing of Metal Hydroxide Sediment Sludge from Printed Circuit Board Manufacturing Wash Water", Waste Management, 2000, 20, 695-701. (21)Hagiwara, R., Ito, Y., "Room temperature ionic liquids of alkylimidazolium cations and fluoroanions", Journal of Fluorine Chemistry, 2000, 105, 221-227. (22)Hong, Kyung. Jin., Tokunaga, Shuzo., Kajiuchi, Toshio., "Extraction of heavy metals from MSW incinerator fly ashes by chelating agents", Journal of Hazardous Materials, 2000, B75, 57-73. (23)Hsiao, M. C., Wang, H. P., Yang, Y. W., "EXAFS and XANES studies of copper in solidified fly ashes", Environmental Science & Technology, 2001, 35, 2532-2535. (24)Hsieh, C. H., Lo, S. L., Chiueh, P. T., Kuan, W. H., Chen, C. L., "Microwave enhanced stabilization of heavy metal sludge", Journal of Hazardous Materials, 2007, B139, 160–166. (25)Hongxia, Zhang., Milin, Zhang., "Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors", Materials Chemistry and Physics, 2008, 108, 184-187.

(26)Hanh, H. D., Dong, N. T., Starvarache, C., Okitsu, K., Maeda, Y., Nishimura, R., "Methanolysis of triolein by low frequency ultrasonic irradiation", Energy Conversion and Management, 2008, 49, 276-280. (27)Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.,"Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation", Green Chemistry, 2001, 3, 156–164. (28)Hsiao, M. C., Wang, H. Paul., Huang, Y. J., Yang, Y. W., "EXAFS study of copper in waste incineration fly ashes", Journal of Synchrotron Radiation, 2001, 8, 931-933. (29)Ji, J., Wang, J.; Li, Y., Yu, Y., Xu, Z., "Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation", Ultrasonics, 2006, 44, 411-414. (30)Keskinen, J., Ruuskanen, P., Karttunen, M., Hannula, S. P., "Synthesis of silver powder using a mechanochemical process", Applied Organometallic Chemistry, 2001, 15, 393-395. (31)Khanna, P. K., Subbarao, V. S., "Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium", Materials Letters, 2003, 57, 2242-2245. (32)Kuo, C. Y., Wu, C. H., Lo, S. L., "Removal of copper from industrial sludge by traditional and microwave acid extraction", Journal of Hazardous Materials B, 2005, 120, 249–256. (33)Lin, K. S., Wang, H. P., "Shape selectivity of trace by-products for supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-48", Applied Catalysis B: Environmental, 1999, 22, 261. (34)Lévêque, J. M., Luche, J. L., Pétrier, C., Rudy Roux and Werner Bonrath., "An improved preparation of ionic liquids by ultrasound", Green Chemistry, 2002, 4, 357–360. (35)Lévêque, J. M., "A general ultrasound-assisted access to room-temperature ionic liquids", Ultrsonics Sonochemistry, 2006, 13, 189-193. (36)Lévêque, J. M., Estager, J., Draye, M., Boffa, L., Cravotto, G., Bonrath, W., "Synthesis of ionic liquids using non-conventional activation methods: An Overview", Monatshefte Fur Chemie, 2007, 138, 1103-1113. (37)Liu, Z. H., Liu, Z. Y., Li, Q. H., Wu, H. P., Zhang, D. M., "Morphology control of micro-sized spherical silver powder prepared by spray pyrolysis", Chinese Journal of Nonferrous Metals, 2007, 17, 1, 149-155. (38)Lianjie, Zhu., Yuntao, Chen., Yiteng, Zheng., Naixuan, Li., Jiande, Zhao., Youguang, Sun., "Ultrasound assisted template-free synthesis of Cu(OH)2 and hierarchical CuO nanowires from

Cu7Cl4(OH)10?H2O", Materials Letters, 2010, 64, 976–979. (39)Mansour, A. N., Melendres, C. A., "Analysis of X-ray Absorption Spectra of Some Nickel Oxycompounds Using Theoretical Standards", Journal of Physical Chemistry A,1998, 102, 65. (40)Marinos, A. Stylianou., Demetra, Kollia., Katherine, J. Haralambous., Vassilis, J. Inglezakis., Konstantinos, G. Moustakas., Maria, D. Loizidou., "Effect of acid treatment on the removal of heavy metals from sewage sludge", Desalination, 2007, 215, 73–81. (41)Min, Xia., Yue, dong. Lu., "A novel neutral ionic liquid-catalyzed solvent-free synthesis of 2,4,5-trisubstituted imidazoles under microwave irradiation", Journal of Molecular Catalysis A: Chemical, 2007, 265, 205–208. (42)Neale, C. Nelson., Bricka, R. Mark., Allen, C. Chao., "Evaluating acids and chelating agents for removing heavy metals from contaminated soils", Enviromental Progress, 1997, 16, No.4. (43)Naoum, C., Fatta, D., K. J. Haralambous and M. Loizidou., "Removal of heavy metals from sewage sludge by acid treatment", Journal of Environmental Science and Health Part A, 2001, 36, 5, 873–881. (44)Nitin, S. Nandurkar., Malhari, D. Bhor., Shriniwas, D. Samant., and Bhalchandra, M. Bhanage., "Ultrasound-Assisted Regioselective Nitration of Phenols Using Dilute Nitric Acid in a Biphasic Medium", Industrial & Engineering Chemistry Research, 2007, 46, 25, 8590–8596. (45)Noei, J., Khosropour, A, R., "Ultrasound-promoted a green protocol for the synthesis of 2,4-diarylthiazoles under ambient temperature in [bmim]BF4", Ultrasonics Sonochemistry, 2009, 16, 711-717. (46)Pandey, S., "Analytical applications of room-temperature ionic liquids: A review of recent efforts", Analytica Chemica Acta, 2006, 556, 38–45. (47)Robert, W., "Chelant extraction of heavy metals from contaminated soils", Journal of Hazardous Materials, 1999, 66, 151-210. (48)Seddon, K. R., Stark, A., Torres, M. J., "Influence of chloride, water, and organic solvents on the physical properties of ionic liquids", Pure and Applied Chemistry, 2000, 72, 2275-2287. (49)Stavarache, C., Vinatoru, M., Nishimura, R., Maeda, Y., "Fatty acids methyl esters from vegetable oil by means of ultrasonic energy", Ultrasonics Sonochemistry, 2005, 12, 367-372. (50)Sun, H. G., Liu, H., Yin, G. F., Liu, W., Luan, Y. L., Yu, Y. L., "Study on the separation of silver nanoparticles from silver sol", Rare Metal Materials and Engineering, 2006, 35, 7, 1146-1149.

(51)Si, M. Z., Fang, Y., Peng, L., Zhang, X., "Nano-silver colloids prepared by electrolysis and research on its SERS activity", Spectroscopy and Spectral Analysis, 2007, 27, 5, 948-952. (52)Singh, A. K., Fernando, S. D., Hernandez, R., "Base-catalyzed fast transesterification of soybean oil using ultrasonication", Energy & Fuel, 2007, 21, 1161-1164. (53)Samuel, A. Morton III., "Comparison of Three Bacterial Toxicity Assays for Imidazolium-Derived Ionic Liquids", Journal of Environmental Engineering, 2008, 135, 12, 1388. (54)Shinde, M., Pawar, A., Karmakar, S., Seth, T., Raut, V., Rane, S., Bhoraska, S., Amalnerkar, D., "Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation", Journal of Nanoparticle Research, 2009, 11, 2043-2047. (55)Tsay, C. Y., Liu, K. S., Lin, T. F., Lin, I. N., "Microwave sintering of Ni Cu Zn ferrites and multilayer chip inductors", Journal of Magnetism and Magnetic Materials, 2000, 209, 189-192. (56)Tokuda, H., Hayamizu, K., Ishii, K., Susan, M., Watanabe, M., "Physicochemical Properties and Structures of Room Temperature Ionic Liquids.2 Variation of Alkyl Chain Length in Imidazolium Cation", Journal of Physical Chemistry b, 2005, 109, 6103-6110. (57)Tokuda, H., Hayamizu, K., Ishii, K., Susan, M., Watanabe, M., "Physicochemical Properties and Structures of Room-Temperature Ionic Liquids. 3 Variation of Cationic Structures", Journal of Physical Chemistry b, 2006, 110, 6, 2833–2839. (58)Vladimir, Misik., Norio, Miyoshi., Peter, Riesz., "PR Spin-Trapping Study of the Sonolysis of H2O/D2O Mixtures: Probing the Temperatures of Cavitation Regions", Journal of Physical Chemistry, 1995, 99, 11, 3605–3611. (59)Varma, R. S., Namboodiri, V. V., "An expeditious solvent-free route to ionic liquids using microwaves", Chemical Communications, 2001, 7, 643–645. (60)Varma, R. S., Namboodiri, V. V., "An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves", Teteahedron Letters, 2002, 43, 5381–5383. (61)Varma. R. S., Namboodiri, V. V., "Solvent-Free Sonochemical Preparation of Ionic Liquids", Organic Letters, 2002, 18, 4, 3161–3163. (62)Vasundhara, Singh., Sukhbir, Kaur., Varinder, Sapehiyia., Singh, J., Kad, G.L., "Microwave accelerated preparation of [bmim][HSO4] ionic liquid: an acid catalyst for improved synthesis of coumarins", Catalysis Communications, 2005, 6, 57–60. (63)Walden, P., "Molecular Weights and Electrical Conductivity of

Several Fused Salts", Bull Acad Imper Sci(St Petersburg), 1914, 405-422. (64)Whittaker, A.G.," Fast and furious – Tucking into a casserole straight out of the domestic microwave can be a searing experience. But for chemists the effects of superheating are pure magic", 1998, 34, 157. (65)Welton, T., "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis", Chemical Reviews, 1999, 99, 2071-2083. (66)Wilkes, J. S., "A short history of ionic liquids-from molten salts to neoteric solvents", Green Chemistry, 2002, 4, 73-80. (67)Wei, G. T., Yang, Z., Chen, C. J., "Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions", Analytica Chemica Acta, 2003, 488, 183–192. (68)Wenzhong, Wang., Oomman, K. Varghese., Chuanmin, Ruan., Maggie, Paulose., and Craig, A. Grimesa., "Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates", Journal of Materials Research, 2003, 18, No.12, 2756-2759. (69)Whitehead, J. A., Zhang, J., Pereira, N., McCluskey, A., Lawrance, G. A., "Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores", Hydrometallurgy, 2007, 88, 109-120. (70)Weast (Ed.), R. C., "C. R. C. Handbook of Chemistry and Physics", 90st edition, C. R. C. Press, Boca Raton, 2010, FL. (71)Weizhong, Lv., Zhongkuan, Luo., Hui, Yang., Bo, Liu., Wenjiang, Weng., Jianhong, Liu.,"Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders", Ultrasonics Sonochemistry, 2010, 17, 344–351. (72)Yong, fu. He., Yongqing, Su., Cong, Li., Yun, Zhong., Limei, Liu.,"Synthesis of [RMim]PF6(R=P,B,C6)ionic liquid under microwave irradiation and research of its conductivity", 2008. (73)Zhang, Z. T., Zhao, B., Hu, L. M., "protective mechanism of ultrafine silver powder synthesized by chemical reduction processes", Journal of Solid State Chemistry, 1996, 121, 105-110. (74)Zhao, D., Wu, M., Kou, Y., Min, E., "Ionic liquids: applications in catalysis", Catalysis Today, 2002, 74, 157-189.

An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples T.G. Kazi
,

, M.K. Jamali

, A. Siddiqui, G.H. Kazi, M.B. Arain and H.I. Afridi

National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan Available online 15 November 2005.

Abstract
A rapid ultrasound accelerated sequential extraction procedure has been used to develop sequential extraction proposed by BCR protocol (the community Bureau of Reference now the European Union “Measurement and Testing Programme”). The effects of the ultrasonic treatment on the extraction of Cu, Cd, Cr, Pb, Ni and Zn from untreated sewage sludge collected from industrial site of Hyderabad city (Pakistan) were compared with those obtained from conventional sequentional extraction procedure of modified BCR protocol. In BCR method, each extraction steps takes 10 h, where as with the use of compromise sonication conditions in ultrasonic bath, steps 1–3 of the sequential extraction (excluding the hydrogen peroxide digestion in step 3, which was not performed with sonication) could be completed in 30, 30 and 30 min, respectively. Extractable Cd, Cr, Pb and Ni contents were obtained by both comparable methodologies were measured by electrothermal atomic absorption spectrometry (ETAAS), while for Cu and Zn Flame atomic absorption spectrometry (FAAS) was used. The validations of both methods were compared by the analysis of certified reference material of soil amended with sewage sludge (BCR 483). According to statistical evaluation of the results, the proposed accelerated extraction method is valid alternative to conventional shaking with much shorter extraction time with p value <0.05. The overall metal recoveries in steps 1–3 (excluding residual step) were 95–100% of those obtained with the conventional BCR protocol, except for Cu extracted (91.6%) as related to indicative values of Cu in BCR 483 obtained in 1–3 steps. The results of the partitioning study of untreated industrial waste water sewage sludge, indicate that more easily mobilized forms (acid exchangeable) were predominant for Cd and Zn, in contrast, the largest amount of Pb and Cr was associated with the iron/manganese oxide and organic matter/sulphide fractions. Keywords: Untreated waste water sludge; Metal partitioning; Modified BCR sequential extraction; Ultrasonic bath; Electrothermal atomic absorption spectrometry


赞助商链接
相关文章:
土壤修复
三、修复技术的技术特点重金属在土壤中以不同形态...琥珀70.6mg/L,Cd、Pb、Zn、C r的去除率分别...(17) . 钱春香,王明明,许燕波.土壤重金属污染现状...
土壤重金属检测
土壤重金属检测第一部分:样品的采集一个完整的环境样品的分析,包括从采样开始到出报告,样品分析流程为:采样→样品 处理→分析测定→整理报告,大致可分为这四个阶段...
除去土壤重金属技术方法汇总
重金属汞,热处理法 可将其有效地从土壤清除。...植物提 取修复是采用超积累植物或诱导超量积累植物将...(嘧啶- 2,6-乙酰乙酸)来萃取底泥中的重金属, ...
土壤重金属污染防治修复技术
该技术可以从根本上消除土壤重金属的污染且去除...氧化还原、沉淀以及萃取,以降低重金属的生物有效性。...目前已发现有 700 多种超积 累重金属植物,积累 ...
土壤重金属治理方法
2.1.1 客土法 客土法是以非污染土壤将污染土壤...然后经过络合或沉淀作用使重金属富集而去除的过程。...植物修复技术主要包含六种类型:根际过滤、植物萃取、...
土壤重金属污染常见治理方法
“束缚”其跨膜吸收,或与某些蛋白质、有机酸结合...植物治理措施的关键是寻找合适的超积累或耐重金属 ...对于已被污染的土壤主要是进行改造、 治理, 以消除...
重金属形态浸提方法
加超纯水使之 全部溶解,冲洗内壁,定容至 50ml 的...(以。 HNO3 调节 pH 2.0),85℃水浴提取 3h ,...研究表明,EDTA 萃取后,土壤的生物可利用态重金属都...
土壤重金属形态分析的改进BCR方法
碳酸盐结合重金属: 指土壤中的重金属元素在碳酸...将重金属形态分为 4 种, 即: 溶态(弱酸提取...之后再放到 85±2℃的水浴进行消化 1h,前半...
浊点萃取在重金属离子形态研究中的应用研究——开题报告
超声波系列萃取土壤中重金... 6页 免费 微波萃取...污泥中重金属形态分布与可... 7页 免费 超临界CO2...样品→加螯合剂→加表面活性剂→加添加剂→水浴加热...
土壤重金属污染现状及其治理方法
许多问题待解决,如超积累植物吸收重金属的机理 还未...电磁波对土壤进行加热, 使污染物从土壤颗粒内解吸...连续种植该植物,可有效降 低或去除土壤重金属。 ...
更多相关标签: