当前位置:首页 >> 数学 >>

高中数学必修2第一章1简单几何体


北师大版高中数学必修2

1

2

3

4

5

6

7

§1. 简单几何体
?导入:三维空间是人类生存的现实空间,生活

中蕴涵着丰富的几何体,请大家欣赏下列各式 各

样的几何体。

8

9

§1.1 简单的旋转体
? 问题1:如图所示:把一个半圆面绕着其直径 所在的直线在空间旋转一周,则半圆面在旋 转的过程中所形成的图形会是什么呢?

A

球体

10

一、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转轴,将 半圆旋转一周后所形成的曲面叫作球面。
把球面所围成的几何体叫作球体,简称球。
其中:把半圆的圆心叫作球心。

A
O

连结球心与球面上的任意一点的线段叫作 球的半径。 连结球面上的任意两点且过球心的线段叫作 半球的直径。

径 2、球的表示: 用表示球心的字母表示,如 球心 球O 11

B

请大家想一想怎样用集合的观点去定义球? ? 把到定点O的距离等于或小定长的点的集合 叫作球体,简称球。 ? 其中:把定点O叫作球心,定长叫作球的半 径 ? 到定点O的距离等于定长的点的集合叫作球 面。

12

问题2: 如图所示:把矩形ABCD绕着其一边 AB所在的直线在空间中旋转一周,则矩形的 其它三条边在旋转的过程中所形成的曲面围 成的几何体会是什么呢?
B C

B

C

A

D

A

D

13

二、圆柱的结构特征
1、定义:以矩形的一边所在直线为 O1
矩形

旋转轴,把它在空间中旋转一周后,其余 三边旋转形成的曲面所围成的几何体叫做 圆柱。

(1)旋转轴叫做圆柱的轴。
O

(2) 垂直于轴的边旋转而成 的圆面叫做圆柱的底面。 (3)由平行于轴的边旋转而 成的曲面叫做圆柱的侧面。

(4)无论旋转到什么位置不 14 垂直于轴的边都叫做圆柱的母线。

2、表示:用表示它的轴的端点的两个 字母表示,如圆柱OO1。

O

O1
侧面 轴 底面

母线

15

问题3: 如图所示:把直角三角形ABC绕着其一 边AB所在的直线在空间中旋转一周,则直角 三角形ABC的其它两条边在旋转的过程中所 形成的曲面围成的几何体会是什么呢?
B B

A

C

A

C
16

三、圆锥的结构特征
S

1、定义:以直角三角形的一条直角 边所在直线为旋转轴,其余两边旋转而成 的曲面所围成的几何体叫做圆锥。
直角三角形

(1)旋转轴叫做圆锥的轴。

O

A

(2) 垂直于轴的边旋转而成 的圆面叫做圆锥的底面。

(3)不垂直于轴的边旋转而 成的曲面叫做圆锥的侧面。 (4)无论旋转到什么位置不 17 垂直于轴的边都叫做圆锥的母线。

2、圆锥的表示: 用表示它的轴的 端点的两个字母 表示,如所示, 记为:圆锥SO
B

S 轴

侧面 母线
O

A 底面
18

问题4: 如图所示: 直角梯形ABCD绕着它的垂直 于底边的腰AB所在的直线在空间中旋转一周, 则直角梯形ABCD的其它三条边在旋转的过程 中所形成的曲面围成的几何体会是什么呢?
B

C

C

B

A

D
19

四、圆台的结构特征: 圆台的定义1:
把直角梯形绕着它的垂直于底边的腰所在的直 线在空间中旋转一周,则直角梯形的其它三条 边在旋转的过程中所形成的曲面围成的几何体 会叫作圆台。

20

圆台的定义2:用一个平行于圆锥底面 的平面去截圆锥,底面与截面之间的部分, 这样的几何体叫作圆台。

21

2、圆台的表示:
用表示它的轴的字母表示,如圆台OO′
O'

底面 轴 侧面 母线
底面
22

O’

总结:
由于球体、圆柱、圆锥、圆台分别由平面图形半圆、 矩形、直角三角形、直角梯形通过绕着一条轴旋转而 生成的,所以把它们都叫旋转体。

定义 ? 一条平面曲线绕着它所在的平面内的一条 定直线旋转所形成的曲面叫作旋转面; ? 封闭的旋转面围成的几何体叫作旋转体。
23

24

思考:圆柱、圆锥、圆台之间有何关系? 提示:(1)圆柱、圆锥、圆台的形状不同,它们之间 既有区别又有联系,并且在一定条件下可以相互转 化.当圆台的下底面保持不变,而上底面越来越大时, 圆台就越来越接近于圆柱,当上底面增大到与下底 面相同时,圆台转化为圆柱;当圆台的上底面越来 越小时,圆台就越来越接近于圆锥,当上底面收缩 为一个点时,圆台就转化为圆锥了.
25

(2)柱体、锥体、台体之间的关系:

26

? 思考题:1.用平行于圆柱,圆锥,圆台的底面的平 面去截它们,那么所得的截面是什么图形? 性质1:平行于圆柱,圆锥,圆台底面的截面都是 圆。 2.过圆柱,圆锥,圆台的旋转轴的截面是什么图形? 性质2:过轴的截面(轴截面)分别是全等的矩形, 等腰三角形,等腰梯形。

3.用一个平面去截球体得到的截面是什么图形? 性质3:用一个平面去截球体得到的截面是一个圆。
27

判断题:
(1)在圆柱的上下底面上各取一点,这两点的连 线是圆柱的母线.






(2)圆台所有的轴截面是全等的等腰梯形.(

(3)与圆锥的轴平行的截面是等腰三角形.(



28

29

我们把若干个平面多边形围成的几何体叫作 多面体.其中棱柱、棱锥、棱台是简单多面体.

30

§1.2:简单的多面体
1.多面体的定义:把由若干个平面多边形围成的空间图 形叫做多面体。 ? 自然界有很多的物体都呈多面体的形状,如图所示: 其中:把围成多面体的各个多边形叫作多面体的面; 两个面的公共边叫作多面体的棱, 棱与棱的公共点叫作多面体的顶点; ? 连结不在同一个面内的两个顶点的线段叫作多面体的对角 线。例如: ? 多面体按照它的面数的多少,可以分为:四面体、五面体、 六面体……
31






棱 顶点

32

一、 观察下列几何体并思考:

它们具有哪些性质?

33

一、棱柱
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 两个互相平行的平面叫做棱柱的底面, 其余各面叫做棱柱的侧面。 相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。
34

底面

侧面 侧棱 顶点
底面
35

一、 观察下列几何体并思考:

棱柱(1),(3)与棱柱(2)的不同之处?

(1)

(2)

(3)

36

? 两个特殊的棱柱:直棱柱与正棱柱
把侧棱垂直于底面的棱柱叫作直棱柱; 把底面是正多边形的直棱柱叫作正棱柱; ? 直棱柱的性质:直棱柱的侧面都是矩形; ? 正棱柱的性质:正棱柱的侧面是全等的矩

形;
37

2、棱柱的分类: 棱柱的底面可以是三角形、四边形、五边形、 …… 我们把棱柱按照底面多边形边数的多少, 可分三棱柱、四棱柱、五棱柱、……

三棱柱

四棱柱

五棱柱 38

3、棱柱的表示法(下图)

棱柱用表示两底面多边形的顶点的字母表 示棱柱,如:棱柱ABCDE-A1B1C1D1E1 。
39

想一想:观察下面的空间几何体,结合棱柱的定义,

思考下列问题.
问题1:根据棱柱的定义,上图

中的几何体是棱柱吗?
提示:不是.如图所示的几何体尽管有两个平面互相 平行,其余各面都是平行四边形,但是它不满足每 相邻两个四边形的公共边都互相平行,故题图中的 几何体不是棱柱.
40

问题2.上图中的ABCD -A1B1C1D1是棱柱吗?A1B1C1D1-

A2B2C2D2呢?
提示:题图中的ABCD -A1B1C1D1及A1B1C1D1-A2B2C2D2均 有两个面互相平行,其余各面相邻的公共边都互相 平行,故均是棱柱. 问题3.你知道面数最少的棱柱是几棱柱吗?它有几 个顶点,几条棱? 提示:面数最少的棱柱是三棱柱,它有六个顶点, 九条棱.
41

二、观察下列几何体,有什么相同点?

42

二、棱柱 1、棱锥的概念 有一个面是多边形,其余各面是有一 个公共顶点的三角形, 由这些面所围成的 几何体叫做棱锥。
这个多边形面叫做棱锥的底面。 有公共顶点的各个三角形叫做 棱锥的侧面。

各侧面的公共顶点叫做棱锥的顶点。 相邻侧面的公共边叫做棱锥的侧棱。
43

S

棱锥的顶点 棱锥的侧棱

D
E A B

棱锥的侧面 C 棱锥的底面
44

? 一个特殊的棱锥:正棱锥 把底面为正多形,侧面是全等的三角形的棱锥叫作 正棱锥

? 正棱锥的性质:正棱锥的侧棱长相等;侧面是全等
的等腰三角形;

45

S A

C 2、棱锥的分类:按底面多边形的边数, 可以分为三棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面 的字母表示。如四棱锥S-ABCD。
46

B

D

三、思考题:用一个平行于棱锥底面的 平面去截棱锥,那么所得截面与棱锥 底面之间的几何体会是怎样的一个几 何体呢?
D1 C1
A1 D1 B1

A1

C1

B1

47

三、棱台的结构特征 1、棱台的概念:用一个平行于棱锥底面 的平面去截棱锥,底面和截面之间的部 分叫做棱台。
A1
D1 B1 C1 上底面 侧面 侧棱 下底面 顶点
48

棱台的性质:棱台的上下底面平行,侧棱的延长线交于一点

2、棱台的分类:由三棱锥、四棱锥、五棱锥 …截得的棱台,分别叫做三棱台,四棱台, 五棱台… 3、棱台的表示法:棱台用表示上、下底面各 顶点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1
D1 B1 C1

49

思考:棱柱、棱锥、棱台之间存在怎样的关系? 提示:棱锥是当棱柱的一个底面收缩为一个点时形成 的空间图形,棱台则可以看成是用一个平行于棱锥底

面的平面截棱锥所得到的空间图形,它们的关系可用
如图表示:

50

提升总结:几何体的分类

柱体

锥体

台体



多面体

旋转体
51

1.用任意一个平面截一个几何体,各个截面都是圆, 则这个几何体一定是 ( C ) A.圆柱 C.球体 B.圆锥 D.圆柱,圆锥,球体的组合体

【解析】当用过高线的平面截圆柱和圆锥时,截面分
别为矩形和三角形,只有球满足任意截面都是圆面.
52

2.下列说法正确的是( D

)

A.有两个面平行,其余各面都是四边形的几何体叫棱柱.

B.有两个面平行,其余各面都是平行四边形的几何体叫
棱柱.

C.有一个面是多边形,其余各面都是三角形的几何体叫
棱锥. D.棱台各侧棱的延长线交于一点.

53

3.以下四个叙述:
① 正棱锥的所有侧棱相等; ② 直棱柱的侧面都是全等的矩形; ③ 圆柱的母线垂直于底面; ④ 用经过旋转轴的平面截圆锥,所得的截面一定是全

等的等腰三角形.
其中,正确的个数为( B ) A .4 B .3 C .2 D .1

【解析】①③④正确.
54

4.(2014·亳州高一检测)一个透明密闭的正方体容器中, 恰好盛有该容器一半容积的水,任意转动这个正方体,则水 面在容器中的形状可以是:(1)三角形;(2)长方形;(3)正方 形;(4)正六边形.其中正确的结论是_______.(把你认为正 确的序号都填上)

55

【解析】因为正方体容器中盛有一半容积的水,无论怎样转动, 其水面总是过正方体的中心.三角形截面不过正方体的中心, 故(1)不正确; 过正方体的一对棱和中心可作一截面,截面形状为长方形,故 (2)正确; 过正方体四条互相平行的棱的中点得截面形状为正方形,该截 面过正方体的中心,故(3)正确; 过正方体一面上相邻两边的中点以及正方体的中心得截面形状 为正六边形,故(4)正确.

【答案】(2)(3)(4)
56

5.下面是关于四棱柱的四种说法:
①若有两个侧面垂直于底面,则该四棱柱为直四棱

柱;
②若有两个过相对侧棱的截面都垂直于底面,则该四 棱柱为直四棱柱;

③若四个侧面两两全等,则该四棱柱为直四棱柱;
④若四棱柱的四条对角线两两相等,则该四棱柱为直

四棱柱.
其中,正确说法的编号是________.
57

【解析】①错误,必须是两个相邻的侧面;②正确, 两个过相对侧棱的截面的交线平行于侧棱,又垂直于 底面;③错误,反例可以是一个斜四棱柱;④正确, 对角线相等的平行四边形为矩形.故应填②④. 【答案】 ②④

58

6.下列几何体是不是棱台,为什么? (1) (2)

(1)不是棱台,因为此几何 (2)不是棱台,因为它 体的侧棱的延长线不相交于 不是由平行棱锥的底面 的平面截得的几何体. 一点,不是由棱锥截得的. 59

1.圆柱、圆锥、圆台、球都是旋转体.圆柱是矩形绕
一边旋转而成的,圆锥是直角三角形绕一条直角边旋

转而成的,圆台既可以看作是由圆锥截得的,也可以
看作是直角梯形绕直角腰旋转而成的,球是半圆绕直 径旋转而成的. 2.棱柱、圆柱统称柱体;棱锥、圆锥统称锥体; 棱台、圆台统称台体.
60


相关文章:
高一数学必修2_第一章空间几何体知识点
高一数学必修2_第一章空间几何体知识点_数学_高中教育_教育专区。第一章 空间几何体 1.1 空间几何体的结构 1. 多面体与旋转体: (1)由若干个平面多边形围成...
人教版高中数学必修2第一章_空间几何体练习题及答案(全)
人教版高中数学必修2第一章_空间几何体练习题及答案(全)_数学_高中教育_教育专区...第一章 空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体...
人教版高中数学必修2第一章_空间几何体练习题及答案(全)
人教版高中数学必修2第一章_空间几何体练习题及答案(全)_数学_高中教育_教育...第一章 空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体中...
高中数学必修2知识点总结:第一章_空间几何体
高中数学必修 2 知识点总结第一章 空间几何体 1.1 柱、锥、台、球的结构特征 1.2 空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左...
数学必修二第一章空间几何体知识点与习题
数学必修二第一章空间几何体知识点与习题_数学_高中教育_教育专区。第一章 空间几何体 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的...
高中数学必修2知识点总结:第一章_空间几何体(1)1
高中数学必修 2 知识点总结第一章 1.1 柱、锥、台、球的结构特征 1.2 空间几何体的三视图和直观图 1 三视图: 正视图:___ 2 画三视图的原则: ___、_...
人教版高中数学必修2第一章-空间几何体练习题及答案(全)
人教版高中数学必修2第一章-空间几何体练习题及答案(全)_数学_高中教育_教育...第一章 空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体中...
数学必修二第一章知识点总结+习题
数学必修二第一章知识点总结+习题_数学_高中教育_教育专区。第一章 空间几何体 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有...
高中数学必修2第一章空间几何体练习
高中数学必修2第一章空间几何体练习_高二数学_数学_高中教育_教育专区。高中数学必修 2 9.14zhou1 ___班___号 ___姓名 一、选择题(每小题 5 分) 1、下...
更多相关标签:
高中化学必修一第一章 | 高中数学必修二第一章 | 高中地理必修一第一章 | 高中数学必修2第一章 | 高中物理必修一第一章 | 高中生物必修三第一章 | 高中数学必修一第一章 | 高中数学必修3第一章 |