当前位置:首页 >> 数学 >>

2014春高中数学课程标准导读作业答案


(3)简述数学在现代社会发展中的地位和作用。 答: 纵观近代科学技术的发展,可以看到数学科学是使科学技术取得重大进 展的一个重要因素, 同时它提出了大量的富有创造性并卓有成效的思想。本世纪 的数学成就, 可以归入数学史上最深刻的成就之列,它们已经成为我们这个工业 技术时代发展的基础。 数学科学的这些发展,已经超出了它们许多实际应用的范 围,而可载入人类伟大的智力成就的史册。 数学

科学是集严密性、 逻辑性、 精确性和创造力与想象力于一身的一门科学。 这个领域已被称作模式的科学。 其目的是要揭示人们从自然界和数学本身的抽象 世界中所观察到的结构和对称性。 无论是探讨心脏中的血液流动这种实际的问题 还是由于探讨数论中各种形态的抽象问题的推动, 数学科学家都力图寻找各种模 型来描述它们,把它们联系起来,并从它们作出各种推断。部分地说,数学探讨 的目的是追求简单性,力求从各种模型提炼出它们的本质。 (2)谈谈你自己对于我国数学课程教学"双基”的认识。 答:《普通高中数学课程标准(实验)》要求:一方面保持我国重视基础知 识教学、基本技能训练和能力培养的传统。另一方面,随着时代的发展,特别是 数学的广泛应用、 计算机技术和现代信息技术的发展,数学课程设置和实施应重 新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的"双基”。 例如,高中数学课程增加"算法”内容,把最基本的数据处理、统计知识等 作为新的数学基础知识和基本技能。同时,应删减烦琐的计算、人为的技巧化难 题和过分强调细枝末节的内容,克服"双基”异化的倾向。 强调数学的本质,注意适度形式化。数学课程教学中,需要学习严格的、形 式化的逻辑推理方式。但是数学教学,不仅限于形式化数学,学生还必须接触到 生动活泼、灵活多变的数学思维过程。要让学生追寻数学发展的历史足迹,体念 数学的形成过程和数学中的思想方法。 教师应该把高度严格的学术形态的数学转 化为学生乐于思考的、兴趣盎然的教学形态。 (1)简述高中数学课程中平面向量数量积的定义及相关的教学内容。 答: 数量积定义: 平面上两个向量 a 与 b 的数量积定义为 a?b=|a||b|cos? , 其中 ? 是两个向量之间的夹角。 与平面向量相关的主要教学内容包括以下三方面:

1

1. 如果两个向量垂直,那么它们之间的夹角是直角 cos?=0,因此 a?b=0,反 过来也对。说明两个向量垂直的充分必要条件是它们的数量积为 0。 2. 容易知道向量的数量积满足条件(?a)?b==?(a?b)=a?(?b),由 此数量积可以利用坐标表示:如果 x=(a,b),y=(c,d)则 x?y=(ac,bd)。 3. 两个向量 a 与 b 的数量积几何意义是:a 的长度与 b 在 a 上投影的长度 的乘积。 (5)长度为 1 的线段上的黄金分割点分该线段长度之比是一个有理数。(错误) (4)黄金分割是三条线段之间的比例关系。 (正确) (3)黄金分割是两条线段之间的比例关系。(错误) (2)正五边形两条对角线的交点将正五边形的对角线黄金分割。(正确) 指出下列论断正或误:(1)黄金矩形可以尺规作图。(正确) (5)形式化是数学的基本特征之一,高中数学课程对形式推理的要求是: B:适度形式化 (4)为了培养学生的应用意识,高中数学课程设置了什么教学内容: C:数学建模 (3)高中数学课程倡导学生采取的学习方式:C:自主探索 (2)为了使不同的学生在数学上得到不同发展,高中数学课程还应具有:
A:多样性与选择性

(1)高中数学课程的性质是:A:基础性 第二次作业 (1)对下面有关函数概念教学的案例进行分析,通过分析指出《高中数学课 程标准》中有关函数内容的教学目标。 案例: 一个圆台形物体的上底面积是下底面积的 1/4,如果该物体放置在桌 面上,下底面与桌面接触,则物体对桌面的压强是 200 帕。若把物体翻转过来, 上底面朝下与桌面接触,问物体对桌面的压强是多少? 案例分析: 我们认为该教学案例作为函数概念的教学内容,这是一个构思很 好的实例,它好在以下四个方面: 1)函数概念存在于问题背景之中。题目条件中没有明显地给出函数关系, 但是要求学生首先判断所要求的变量压强 y 应是接触面积 x 的函数。
2

2)体积―质量―压强;代数―几何―物理。强调了不同学科知识的联系。 3)本题可以进一步作扩充为"桌面压强 y”作为"接触面积 x”的函数,与物 体的形状是否相关? 4)把本案例与一些认为制造的烦琐的函数问题对比不难看到:函数教学中 两种理念、两种结果。 函数教学的一个非常重要的方面是让学生体会函数能够作为反映现实世界 客观规律的数学模型。《高中数学课程标准》在函数的教学建议中要求:"在函 数应用的教学中, 教师要引导学生不断地体验函数是描述客观世界的变化规律的 基本数学模型, 体验指数函数、 对数函数等函数与现实世界的密切联系及其在刻 画现实问题中的作用”。 (2)选择高中数学课程中的某一具体内容,以此内容完成一项探究性教学 设计,并对你的教学设计进行简单的点评分析。 解答:教学设计:平方差公式"探究式”教学。
引入语:象整数的算术演算中存在某些"缩算法”一样,代数式的演算中同样存在"缩算法”,而这些"缩算 法”依赖一些形式简便的乘法公式,这些乘法公式由来简单,但是灵活运用它们,可能会使复杂的代数式 运算变得简单快捷。

通过直接的计算,同学们不难发现下面的等式: 介绍一则有关"平方差公式”的故事:美国北卡罗莱纳大学教授 Carl Pomerance 是一位当代著名的计算数论家。Pomerance 回忆中学时代曾经参加一 次普通的数学竞赛, 其中有一道题是分解整数 8051。 Pomerance 没有采用常规的 因数检验法,从小到大逐个验证,由 2 到 的素数,哪些能够整除 8051。

其实这样做并不困难。象所有爱动脑筋孩子一样,Pomerance 力图寻找一个简便 算法, 更快捷地发现 8051 的因数,但是他没有能够在规定的时间之内完成任务, 他失败了。事实上,存在简捷的分解方法: 但是,失败并没有使这位未来的数论家放弃对问题的进一步思考。事后 Pomerance 向自己提出下面一个非常有趣的问题。 Pomerance 问题:是否一个能够分解的整数必定是两个整数的平方差? 上面问题的答案是肯定的,也就是说,我们有下面的定理。 定理 每个奇合数必定能用平方差的方式分解为两个大于 1 的整数之积。
3

评述:本案例中的"自主探究”是以一位数学家真实的故事而引出的,故事中引 出与"乘法公式” 密切相关的"Pomerance 问题” , 并通过数学家 Pomerance 之口, 导出了一个多少有些使人感到意外的数学结果(定理)。我们认为,这样的结果 对学生的启发性远远胜过案例 4 中所列的一串"数字运算等式”。自主探究应当 采用生动活泼、真正发人深思的形式,教师与教材编写者应该不断研究、不断改 进教学的思想方法,创建富有个性特点的"发现法”教学方法。 (3)从若干方面论述教师知识结构对于高中数学课程标准的适应性问题。 答:新课标对教师的知识结构提出了新的要求,系列 3、4 的选修课程涉及 大量的以往高中数学课程中没有的知识。对称与群,欧拉公式与必曲面分类,三 等分角与数域扩充,初等数论与密码,球面几何,矩阵与变换,统筹法与图论, 等等。这些知识虽然都是大学数学专业能够覆盖的,但是如何在中学阶段、在中 学生的知识背景和理解能力的条件之下实施课程教学, 这是非常值得研究和探讨 的问题。 越是复杂高深的知识在知识背景比较浅近的人群之内传播,对于教师本 人在知识理解和讲授方法方面的要求越高。从这个意义上说,对中学生讲授高等 数学比在大学对数学专业的学生讲授高等数学,教师所面临的困难更大。 另外,新课程的教学法提倡启发式、探究式教学,这样的教学方式也对教师 的知识和能力提出了更高的要求。 我们认为教学中的探究与真正的数学研究没有 本质的区别, 我们难以想象完全缺乏研究能力的教师能够启发学生进行探究性学 习。 (5)1/2+1/3+1/4+…+1/99=24/25
错误 正确

(4)1/2+1/4+1/8+1/16+1/32+1/64=63/64 (3)1+2+4+8+16+32+64=63+64 正确 (2)1+3+5+7+…+99=50×50。正确 (1)1+2+3+4+…+100=5050。正确
(5)每几个专题可组成 1 个模块:A:2 (4)每个专题几学分:A:1

(3)其中系列 1、2 由若干个模块组成,系列 3、4 由若干个专题组成;每 个模块几学分:A:2
(2)选修课程包含几个系列:B:4

4

(1)高中数学课程分必修和选修。必修课由几个模块组成: (1)高中数学课程分必修 和选修。必修课由几个模块组成:B:5

第三次作业 (1)简述高中数学课程的基本教学目标。 答:高中数学课程的基本目标是:构建共同的基础,提供发展平台。在义务 教育阶段之后,为使学生适应现代生活和未来的发展提供更高水平的数学基础, 使他们获得更高的数学素养。 高中阶段的数学将为学生提供多样的课程,适应个 性选择,为学生提供更广泛的发展空间。 课程设置总目标的中心点是:突出课程的基础性,把中小学数学课程作为各 种人才发展的基础准备和基本训练。把中小学数学知识和能力作为一种社会文 化、作为现代社会公民必备的科学素质而普及到每一个学生。 这样的数学课程应是一种大众数学,课程内容的覆盖面、难度、要求等都应 该控制在一个恰当的程度。 课程设置总目标一方面要适应社会发展的要求, 另一方面要适应数学科学自 身发展的要求。 (2)简述高中数学课程的教学观,谈谈你自己对于我国数学课程教学"双 基”的认识。 答:《普通高中数学课程标准(实验)》要求:一方面保持我国重视基础知 识教学、基本技能训练和能力培养的传统。另一方面,随着时代的发展,特别是 数学的广泛应用、 计算机技术和现代信息技术的发展,数学课程设置和实施应重 新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的"双基”。 例如,高中数学课程增加"算法”内容,把最基本的数据处理、统计知识等作为 新的数学基础知识和基本技能。同时,应删减烦琐的计算、人为的技巧化难题和 过分强调细枝末节的内容,克服"双基”异化的倾向。 强调数学的本质,注意适度形式化。数学课程教学中,需要学习严格的、形 式化的逻辑推理方式。但是数学教学,不仅限于形式化数学,学生还必须接触到 生动活泼、灵活多变的数学思维过程。要让学生追寻数学发展的历史足迹,体念 数学的形成过程和数学中的思想方法。 教师应该把高度严格的学术形态的数学转 化为学生乐于思考的、兴趣盎然的教学形态。

5

(3)用教学实例说明直观几何在中学几何课程中的地位和作用。 答:几何的直观性是一个有目共睹的事实,由于几何的直观性,使得几何在 数学中(即使在数学家正在研究的高深的数学中)具有非常重要的地位。下面我 们引用当代伟大的数学家 Michael Atiyah 的话:现代数学与传统数学的差别更 多地是在方式上而不是在实质上。 本世纪的数学在很大程度上是在与实质上具有 的几何困难作斗争, 这些困难是由于研究高维问题而产生的。集合直观仍然是领 悟数学的最有效的渠道,应当在各级学校尽可能广泛地利用几何思想。 现在各国中学几何课程中都加入了直观几何的内容。 学生能够在直观几何课 中遇到引人入胜的难题,例如,种种迷人的折纸与拼图游戏,观察和实验是直观 几何的主要内容。学生能够通过生动的、富有想象力的活动,发展自己的空间想 象力;通过实实在在的动手操作,了解什么是几何变换;通过折叠、拼合建立关 于对称的直观概念。观察、实验、操作、想象等认知活动在直观几何中以形形色 色、丰富多彩的方式表现出来。 几何图形是帮助我们进行数学想象的最有效的工具。本来,数学中的概念都 是非常抽象的概念, 而真正抽象的对象是难以思考的,直观的几何图形是我们最 容易利用的数学形象。因此,直观几何不但能够帮助初学者掌握基础知识,也能 够帮助人们进行真正的数学研究与数学创造。 直观几何并不仅仅停留在直观操作的层面,经过教师的细心引导,直观几何 中也可以包含丰富多彩的、严格的逻辑推理。
(1) 欧几里德《几何原本》包含多少个几何定理?B:465 (2) 根据欧拉圆函数公式,根号-1 开根号-1 次方是一个什么数?A:实数 (3) 等边三角形的几何对称群共包含多少元素?B:6 (4) 《自然哲学的数学原理》是哪位数学家的著作?A:牛顿 (5) 哪种正多边形可以尺规作图?A:正五边形 (1)属于高中数学课程的函数内容是:
A:指数函数 B:对数函数

(2)属于高中立体几何的内容是:A:三视图,B:空间向量 (3)属于高中平面解析几何的内容是:A:直线方程,C:圆锥曲线 (4)列入高中数学课程数列内容是:A:等差数列,B:差分数列 (5)列入高中数学选修课的是:B:初等数论初步,C:对称与群
6

第四次作业 (1)选择高中数学课程中的某一具体内容,以此内容完成一项探究性教学 设计,并对你的教学设计进行简单的点评分析。 教学设计:平方差公式"探究式”教学。
象整数的算术演算中存在某些"缩算法”一样,代数式的演算中同样存在"缩算法”,而这些"缩算法”依赖 一些形式简便的乘法公式,这些乘法公式由来简单,但是灵活运用它们,可能会使复杂的代数式运算变得 简单快捷。 通过直接的计算, 同学们不难发现下面的等式:(a+b)(a-b)=a^2-b^2,例如: 98×102 = 10000-1=9999。

下面介绍一则有关"平方差公式”的故事:美国北卡罗莱纳大学教授 Carl Pomerance 是一位当代著名的计算数论家。Pomerance 回忆中学时代曾经参加一 次普通的数学竞赛, 其中有一道题是分解整数 8051。 Pomerance 没有采用常规的 因数检验法, 从小到大逐个验证, 由 2 到根号 8051 的素数, 哪些能够整除 8051。 其实这样做并不困难。象所有爱动脑筋孩子一样,Pomerance 力图寻找一个简便 算法, 更快捷地发现 8051 的因数,但是他没有能够在规定的时间之内完成任务, 他失败了。 事实上,存在简捷的分解方法:8051=8100-49=90^2-7^2=83*97。但是,失 败并没有使这位未来的数论家放弃对问题的进一步思考。 事后 Pomerance 向自己 提出下面一个非常有趣的问题。 Pomerance 问题:是否一个能够分解的整数必定是两个整数的平方差? 上面问题的答案是肯定的,也就是说,我们有下面的定理。 定理 每个奇合数必定能用平方差的方式分解为两个大于 1 的整数之积。

案例评述: 本案例中的"自主探究”是以一位数学家真实的故事而引出的, 故事之后,我们介绍了与"乘法公式”密切相关的"Pomerance 问题”,并通过数 学家 Pomerance 之口,导出了一个多少有些使人感到意外的数学结果(定理)。 我们认为,这样的结果对学生的启发性远远胜过案例 4 中所列的一串"数字运算 等式”。自主探究应当采用生动活泼、真正发人深思的形式,教师与教材编写者 应该不断研究、不断改进教学的思想方法,创建富有个性特点的"发现法”教学 方法。 (2)用教学实例说明直观几何在中学几何课程中的地位和作用。 答:几何的直观性是一个有目共睹的事实,由于几何的直观性,使得几何在 数学中(即使在数学家正在研究的高深的数学中)具有非常重要的地位。下面我

7

们引用当代伟大的数学家 Michael Atiyah 的话:现代数学与传统数学的差别更 多地是在方式上而不是在实质上。 本世纪的数学在很大程度上是在与实质上具有 的几何困难作斗争, 这些困难是由于研究高维问题而产生的。集合直观仍然是领 悟数学的最有效的渠道,应当在各级学校尽可能广泛地利用几何思想。 现在各国中学几何课程中都加入了直观几何的内容。 学生能够在直观几何课 中遇到引人入胜的难题,例如,种种迷人的折纸与拼图游戏,观察和实验是直观 几何的主要内容。学生能够通过生动的、富有想象力的活动,发展自己的空间想 象力;通过实实在在的动手操作,了解什么是几何变换;通过折叠、拼合建立关 于对称的直观概念。观察、实验、操作、想象等认知活动在直观几何中以形形色 色、丰富多彩的方式表现出来。 几何图形是帮助我们进行数学想象的最有效的工具。本来,数学中的概念都 是非常抽象的概念, 而真正抽象的对象是难以思考的,直观的几何图形是我们最 容易利用的数学形象。因此,直观几何不但能够帮助初学者掌握基础知识,也能 够帮助人们进行真正的数学研究与数学创造。 直观几何并不仅仅停留在直观操作的层面,经过教师的细心引导,直观几何 中也可以包含丰富多彩的、严格的逻辑推理。 (3)将下面两组数字等式推广到尽可能一般的情形: 第一组:1+2+3+4+…+100=5050,1+3+5+7+…+99=50×50。 第二组: 1+2+4+8+16+32+64=63+64 , 1/2+1/4+1/8+1/16+1/32+1/64=63/64 解答:第一组第一个等式的一般情形很简单: 1+2+3+…+n=n(n+1)/2 [1]

但是第二个等式右边一定是一个平方数,即连续奇数之和 1+3+5+7+…+(2m-1)=(2m-1)×(2m-1) [2]

问题的困难在于求出适当的 m, n 使得[1]、 [2]两式右边表达形式恰好是: 123123, 123×123 之类的形式。 观察 123123 的数形是 123123=123×(1001) =123×(10 +1)=N× (10 +1)。 这样一般地我们有 1+2+3+…+2N=N(2N+1)= N×(10 +1)。N=10 。 也就是说只有形状如 1+2+3+…+1000=500500
8
t t 3 t

[3]

1+3+5+…+999=500×500 诸如此类的等式才符合我们的要求。

[4]

第二组等式极容易推广:假定 M 是 2 的方幂,那么我们总有 1+2+4+8+16+…+M=(M-1)+M 1/2+1/4+1/8+1/16+…+1/M=(M-1)/M [5] [6]

从[3]、[4]、[5]、[6]四个等式使我们看到简单的数列求和也会出现意想不 到有趣等式。我们说:数字推理其乐无穷。 (1)高中数学教学中,学习形式化的表达是一项什么要求:B:基本 (2) 高中数学要强调对数学的本质的认识, 否则会将什么淹没在形式化海洋里:
A:数学思维活动

(3)现代数学发展表明,数学全面形式化是:B:不可能的 (4)中学数学课程要讲逻辑推理,更要讲:B:道理 (5)中学数学课程要把数学的学术形态转化为易于学生接受的:A:教育形态

9


相关文章:
2014春高中数学课程标准导读作业答案
2014春高中数学课程标准导读作业答案_数学_高中教育_教育专区。西南大学2014春《高中数学课程标准导读》全部作业答案(3)简述数学在现代社会发展中的地位和作用。 答:...
西南大学2014年春《高中数学课程标准导读》作业及答案(已整理)(共4次)
西南大学2014年春《高中数学课程标准导读作业答案(已整理)(共4次)_其它_高等教育_教育专区。西南大学 2014 年春《高中数学课程标准导读作业答案(已整理)...
高中数学课程标准导读第一次作业答案
高中数学课程标准导读第一次作业答案_高一数学_数学_高中教育_教育专区。西南大学2012数学本科0773 高中数学课程标准导读 第一次作业 1.简述数学在现代社会发展中的地...
2016年春《高中数学课程标准导读》第一次作业
2016年春《高中数学课程标准导读》第一次作业_数学_高中教育_教育专区。(10.0 分)1. (2)为了使不同的学生在数学上得到不同发展,高中数学课程还应具有: A.A...
2016年春《高中数学课程标准导读》第四次作业
2016年春《高中数学课程标准导读》第四次作业_数学_高中教育_教育专区。单选题(...上面问 题的答案是肯定的,也就是说,我们有下面的定理。 定理 每个奇合数必定...
2016春西南大学《高中数学课程标准导读》第四次作业答案
2016春西南大学《高中数学课程标准导读》第四次作业答案_教育学_高等教育_教育专区。2016 春西南大学《高中数学课程标准导读》第四次作 业答案一、单项选择题: 1...
2016春西南大学《高中数学课程标准导读》第三次作业答案
2016春西南大学《高中数学课程标准导读》第三次作业答案_数学_高中教育_教育专区。2016 春西南大学《高中数学课程标准导读》第三次作 业答案一、单项选择题: 1、...
西南大学2016年春《高中数学课程标准导读》作业及答案(已整理)(共4次)
西南大学 2016 年春《高中数学课程标准导读作业答案(已整理) 第一次作业 1:[填空题] (3)简述数学在现代社会发展中的地位和作用。 参考答案: 答:纵观近代...
高中数学课程标准导读第一次作业
0773 高中数学课程标准导读 2013 春第一次作业参考答案 1. 多项选择。对下面 ...©2014 Baidu 使用百度前必读 | 文库协议...
(0773)《高中数学课程标准导读》网上作业题及答案
(0773)《高中数学课程标准导读》网上作业题及答案_数学_高中教育_教育专区。西南大学网络教育课程网上作业及参考答案[0773]《高中数学课程标准导读》 第1次 [论述题...
更多相关标签:
六大名著导读作业答案 | 西方名著导读作业答案 | 名著导读课程简介 | 名著导读课程 | 高中生必读名著导读 | 高中名著导读 | 高中语文名著导读 | 高中生名著导读 |