当前位置:首页 >> >>

2011年高考数学北京卷(理科)含答案


1

2011 年高考数学——北京卷(理科)
一.选择题 1.已知集合 P ? {x | x 2 ? 1} , M ? {a} .若 P ? M ? P ,则 a 的取值范围是 A. (??, ?1] 2.复数 A. i B. [1, ??) C. [?1,1] D. (??, ?1] ? [1, ??) ( B. ?i C. ? ) ( )

i?2 ? 1 ? 2i 4 3 ? i 5 5
D. ?

4 3 ? i 5 5
( )

3.在极坐标系中,圆的圆心的极坐标是 A. (1,

?
2

)

B. (1, ?

? ) 2
C.

C. (1, 0) ( D. 2

D. (1, ? ) )

4.执行如图所示的程序框图,输出的 s 值为 A. ?3 B. ?

开始
i ? 0, s ? 2
s? s ?1 s ?1

1 2

1 3

5.如图, AD , AE , BC 分别与圆 O 切于点 D , E , F ,延长 AF 与圆 O 交于另一点 G .给出下列三个结论: ① AD ? AE ? AB ? BC ? CA ; ② AF ? AG ? AD ? AE ; ③ △ AFB ∽△ ADG . 其中正确结论的序号是 ( ) A.①② B.②③ C.①③ D.①②③

i?4

i ? i ?1

输出 s

结束
第4题 6.根据统计,一名工人组装第 x 件某产品所用的时间(单位:分钟)为

? ? ? f ( x) ? ? ? ? ?

E O F B D
第5题

c , x ? A, x ( A , c 为常数) ,已知工人组装第 4 c ,x ? A x

C

G

件产品用时 30 分钟,组装第 A 件产品用时 15 分钟, A 那么 c 和 A 的值分别是( ) A.75, 25 B.75, 16 C.60, 25 D.60,16 7.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ) A.8 B. 6 2 C.10 D. 8 2

2

4

4 正(主)视图

3 侧(左)视图

俯视图
8.设 A(0,0) , B(4, 0) , C (t ? 4, 4) , D(t , 4) ( t ? R ) .记 N (t ) 为平行四边形 ABCD 内部(不含边界) 的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数 N (t ) 的值域为 ( A. {9,10,11} B. {9,10,12} C. {9,11,12} D. {10,11,12} )

二.填空题
9.在 △ ABC 中,若 b ? 5 , ?B ?

?
4

, tan A ? 2 ,则 sin A ? _________; a ? ________.

10.已知向量 a ? ( 3,1) , b ? (0, ?1) , c ? (k , 3) .若 a ? 2b 与 c 共线,则 k ? ______. 11 . 在 等 比 数 列 {an } 中 , 若 a1 ?

?

?

?

?

?

?

1 , a4 ? ?4 , 则 公 比 q ? 2



| a1 | ? | a2 | ??? | an |?

. 个(用数字作答) .

12.用数字 2,3 组成四位数,且数字 2,3 至少都出现一次,这样的四位数共有

?2 x ? 2, ? , 13.已知函数 f ( x) ? ? x 若关于 x 的方程 f ( x) ? k 有两个不同的实根,则实数 k 的取值范围 ?( x ? 1)3 , x ? 2. ?
是 .
2 14.曲线 C 是平面内与两个定点 F1 (?1,0) 和 F2 (1, 0) 的距离的积等于常数 a ( a ? 1 )的点的轨迹,给出

下列三个结论: ①曲线 C 过坐标原点; ②曲线 C 关于坐标原点对称; ③若点 P 在曲线 C 上,则 △F PF2 的面积不大于 1

1 2 a . 2

3

其中,所有正确结论的序号是



三.解答题
15. (13 分)已知函数 f ( x) ? 4 cos x sin( x ? (1)求 f ( x ) 的最小正周期; (2)求 f ( x ) 在区间 [ ?

?
6

) ?1 .

? ?

, ] 上的最大值和最小值. 6 4

16. (14 分)如图,在四棱锥 P ? ABCD中, PA ? 平面 ABCD,底面 ABCD 是菱形, AB ? 2 ,

?BAD ? 60? .
(1)求证 BD ? 平面 PAC ; (2)若 PA ? AB ,求 PB 与 AC 所成角的余弦值; (3)当平面 PBC 与平面 PDC 垂直时,求 PA 的长.

P

D A B C

17. (13 分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确 认,在图中以 X 表示. 甲组 乙组

9
1

9
1

0
1

X

8

9

(1)如果 X ? 8 ,求乙组同学植树棵数的平均数和方差; (2)如果 X ? 9 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数 Y 的分布列和数 学期望.

0

4

18. (13 分)已知函数 f ( x) ? ( x ? k ) 2 e k . (1)求 f ( x ) 的单调区间; (2)若对于任意的 x ? (0, ??) ,都有 f ( x ) ?

x

1 ,求 k 的取值范围. e

19. (14 分)已知椭圆 G :

x2 ? y 2 ? 1 ,过点 (m,0) 作圆 x2 ? y 2 ? 1的切线 l 交椭圆 G 于 A , B 两点. 4

(1)求椭圆 G 的焦点坐标和离心率; (2)将 | AB | 表示为 m 的函数,并求 | AB | 的最大值.

20. (13 分)若数列 An : a1 , a2 ,?, an ( n ? 2 )满足 | ak ?1 ? ak |? 1 ( k ? 1, 2,?, n ? 1 ) ,则称 An 为 E 数 列.记 S ( An ) ? a1 ? a2 ? ? ? an . (1)写出一个满足 a1 ? a5 ? 0 ,且 S ( A5 ) ? 0 的 E 数列 A5 ; (2)若 a1 ? 12 , n ? 2000 .证明: E 数列 An 是递增数列的充要条件是 an ? 2011 ; (3)对任意给定的整数 n ( n ? 2 ) ,是否存在首项为 0 的 E 数列 An ,使得 S ( An ) ? 0 ?若果存在,写出一 个满足条件的 E 数列 An ;如果不存在,说明理由.

5

6

7

8

9

10


相关文章:
2011年全国高考理科数学试题及答案-北京
2011年全国高考理科数学试题及答案-北京 - 2011 年普通高等学校招生全国统一考试 数学(理) (北京卷) 本试卷共 5 页,150 分。考试时间长 120 分钟。考生务必将...
2018年高考北京卷理科数学(含答案)
2018年高考北京卷理科数学(含答案) - 绝密★启用前 2018 年普通高等学校招生全国统一考试 数学(理) (北京卷) 本试卷共 5 页,150 分。考试时长 120 分钟。...
2011年全国高考理科数学试题及答案-北京
2011年全国高考理科数学试题及答案-北京 - 2011年高考、期中考、期末考、月考、真题附参考答案
2011年全国高考数学试题及答案-理科-北京卷
2011年全国高考数学试题及答案-理科-北京卷_高考_高中教育_教育专区。2011年全国高考数学试题及答案-理科-北京卷,详细解析 数学(理) (北京卷)2011 年普通高等学校...
2018年高考真题——理科数学(北京卷)+Word版含答案
2018年高考真题——理科数学(北京卷)+Word版含答案 - 绝密★启用前 2018 年普通高等学校招生全国统一考试 数学(理)(北京卷) 本试卷共 5 页,150 分。考试时...
2011年全国高考理科数学试题含答案(新课标卷)
2011年全国高考理科数学试题含答案(新课标卷) - 2011 年普通高等学校招生全国统一考试 理科数学 第I卷 一、选择题:本大题共 12 小题,每小题 5 分,在每小...
2014年高考理科数学试题(北京卷)及参考答案
2014年高考理科数学试题(北京卷)及参考答案 - 2014 年普通高等学校招生全国统一考试 数学(理) (北京卷) 一.选择题(共 8 小题,每小题 5 分,共 40 分.在...
2011年高考新课标Ⅱ理科数学试题及答案(精校版-解析版-...
2011年高考新课标Ⅱ理科数学试题及答案(精校版-解析版-word版) - 2011 年普通高等学校招生全国统一考试(新课标Ⅱ卷) 理科数学第Ⅰ卷一、选择题: (本大题共 ...
2011年北京市高考数学理科试题及答案WORD版_图文
2011年北京市高考数学理科试题及答案WORD版 - 2011 年普通高等学校招生全国统一考试 数学(理) (北京卷) 本试卷共 5 页,150 分。考试时间长 120 分钟。考生...
2011年全国高考理科数学试题及答案-北京
2011年全国高考理科数学试题及答案-北京 - 高等学校招生全国统一考试(二) 数学(理) (北京卷) 本试卷共 5 页,150 分。考试时间长 120 分钟。考生务必将答案答...
更多相关标签: