当前位置:首页 >> 数学 >>

正弦函数、余弦函数的图象


正弦函数、余弦函数的图象

1.用描点法作出函数图象的主要步骤是怎样的? 问题:如何作出 y ? sin x , x 的图象. ? [ 0 , 2 ? ] (1)列表

x
sin x
(2) 描点

0

? 6

? 3

? 2

2? 3

5? 6

?

7? 6

4? 3

3? 2

5? 3

11? 2? 6

(3) 连线 2.sinα 、cosα 、tanα 的几何意义. (三角函数线)

正弦线:_____________ 余弦线:_____________ 正切线:_____________

3. 利用正弦线作出比较精确的正弦函数图象(其中 x ) ? [ 0 , 2 ? ] 第一步:先作单位圆,把⊙O1 十二等分; ? ? ? 第二步:十二等分后得 0, , , ,?2? 等角,作出相应的正弦线;
6 3

2

第三步:将 x 轴上从 0 到 2? 一段分成 12 等份(2?≈6.28); 第四步:取点,平移正弦线,使起点与 x 轴上的点重合; 第五步:用光滑的曲线把上述正弦线的终点连接起来,得 y=sinx,x?[0,2?]的图象;

问题:如何作出 y? 的图象. sin x, x? R

利用终边相同角有相同的的三角函数值. 说明:该图象称为“正弦曲线”. 问题:在做正弦函数的图象时,应抓住那些关键点? 观察 y 的图象上,起关键作用的点有以下五点: (0,0) , ( ? sin x , x ? [ 0 , 2 ]

?

(?,0) , (

3? ,?1) , (2 ?,0 ),这五个点确定后 2

? ,1) , 2

y B A O C D E x

图象的形状基本就确定了. 2.五点作图法 在精确度要求不是太高时,要作出 的图象,只需先找出五个 y ? sin x , x ? [ 0 , 2 ? ] 关键点 (0,0) , (

? 3? ,1) , (?,0), ( ,?1) , (2 ?,0 ),然后用光滑曲线将它们连接起来,就 2 2

得到函数的简图,这种方法称为“五点作图法” . 3.余弦函数的图象 问题:如何作出 y 的图象 ? cos x 引导学生从简谐振动的图象的名称“正弦曲线”或“余弦曲线”出发,可以利用正弦曲 线与适当的图形变换得到余弦函数的图象.

2 ? 的图象向左平移 个单位长度而得到. 2
说明:该图象称为“余弦曲线” .

由诱导公式六, y ,所以,可以通过将正弦函数 y ? cos x ? sin( ? x ) ? sin x , x ? R

?

y A O B C D

探究:在函数 y ,x 的图象上的 ? [ 0 ,2 ? ] ? cos x “五点”关键点:

E x

? 3 ? ( 0 , 1 ), ( , 0 ), ( ? , ? 1 ) , (, 0 ), ( 2 ? , 1 ) .
2 2


相关文章:
正弦、余弦、正切函数的图象与性质
正弦、余弦、正切函数的图象与性质_高一数学_数学_高中教育_教育专区。正弦函数的图象与性质、余弦函数的图象与性质、正切函数的图像与性质,相应专题训练 ...
《正弦函数、余弦函数的图象》教学设计
正弦函数余弦函数的图象》教学设计一、学情分析在初中,学生已经学习过代数描点作图法——列表,描点、连线,对于函数 y =sinx,当 x 取值时,y 的值大都是...
正弦函数余弦函数图像和性质练习
高一数学正弦函数余弦函数图像和性质练习班级 姓名 学号 一、选择题 1.y=3sin|x|,x∈R 的值域为( ) A.(0,3) B. [0,3] C.(-3,3) D. [-3,3]...
正弦函数余弦函数的图像教学设计
通过图像激发数学的学习兴趣 教学目标设计 教学重点 教学难点 正弦余弦函数图象的作法及其特征 利用单位圆中的正弦线画正弦曲线 著名数学家波利亚认为: “学习任何...
1.4.1正弦函数-余弦函数图象的教学设计
§1.4.1 正弦、余弦函数图象的教学设计 【教材分析】 《正弦函数,余弦函数的图象》是高中新教材人教 A 版必修四的内容,作为函数,它是已学过 的一次函数、二次...
6.1正弦函数和余弦函数的图像与性质(1)——正弦函数和...
2012 学年高一第二学期教案 2013.03.26 6.1 正弦函数余弦函数的图像与性质(1)——正弦函数余弦函数的图像 教学目标 1、理解正弦函数、余弦函数的概念; 2...
1.4.1 正弦函数 余弦函数的图象
cos x 的简图,并利用图象解决一些有关问题。 【重 【难点】 “五点法”画一个周期的正弦函数,余弦函数图象。 点】运用几何法画正弦函数图象。 问题 3: 正弦...
1.4.1正弦函数、余弦函数的图象 导学案
1.4.1正弦函数余弦函数的图象 导学案_高一数学_数学_高中教育_教育专区。课 题:1.4.1 正弦函数余弦函数的图象 导学案 1.4.1 正弦函数、 教学目标: 教学...
1.4.1正弦函数,余弦函数的图象(教、学案)
§1.4.1 正弦函数,余弦函数的图象【教材分析】 《正弦函数,余弦函数的图象》是高中新教材人教 A 版必修四的内容,作为函数,它是 已学过的一次函数、二次函数、...
高一数学教案:苏教版高一数学正弦函数余弦函数的图象
2 ππ而 y=sin(x+ ),x∈R 的图象可通过将正弦曲线向左平行移动 个单位长度 2 2 而得到. 现在看到的曲线也就是余弦函数 y=cosx 在 x∈R 上的图象,...
更多相关标签: