当前位置:首页 >> 数学 >>

导数大题题组练习二求参数范围


导数大题题组训练二:求参数的范围 1.已知函数 =
2

+ ? 2, > 0 .
1

(1)若对于?x ∈ (0, +∞)都有 > 2( ? 1)成立,求a的取值范围; (2)记 g = + ? ( ∈ ),当 a= 1时,函数g(x)在区间[ , ]上有两个零点, 求实 数 b 的取

值范围. 2.已知函数f x = lnx ? lna,g x = a ? ,其中 a 为常数,函数f(x)和g(x)的图像在它们 与坐标轴交点的切线互相平行. (1)求函数F x = f x ? g(x ? 1)的单调区间; (2)若不等式x ? f x ? k(x + 1) ? f[g x ? 1 ] ≤ 0在区间[1, +∞)上恒成立,求实数 k 的取值范围. 3.已知f x = 3 + 2 ? 2 + 2 (1)若a ≠ 0,求函数f(x)的单调区间; (2)若不等式2x ? lnx ≤ , + 2 + 1恒成立,求实数 a 的取值范围.


相关文章:
更多相关标签: