当前位置:首页 >> 数学 >>

平面直角坐标系中的基本公式教学案


高一数学教学案
平面直角坐标系中的基本公式

材料编号:02

班级 姓名 学号 设计人: 贾仁春 审查人: 孙慧欣 使用时间: 08.2.26 一 、学习目标: 1.掌握平面直角坐标系中的两点间的距离公式; 2.会运用这两个公式解题。 二、学习重点、难点: 1.学习重点:平面上两点间的距离公式和中点坐标公式; 2.学习难点:两点

间距离公式的推导。 三、课前自学: (一)基础知识回顾及检测: 1.数轴上的点与 一一对应。 2.平面直角坐标内的点与 一一对应。 3.数轴上两点 A ( 2 x ) , B ( 2x ? a ) ,则 A,B 的位置关系为( ) A . A 在 B 的左侧 B . A 在 B 的右侧 C . A 与 B 重合 D .由 a 的值决定 (二)知识点梳理: 1.两点间距离公式: (1) A ( x1 , y1 ) , B ( x2 , y2 )两点之间的距离公式为 d ( AB) = 当 AB 平行于 x 轴时,d ( AB) = (2)公式证明: = 。 。

;当 AB 平行于 y 轴时,d ( AB) =

2.坐标法:通过建立平面直角坐标系用代数方法来解决几何问题的方法叫做坐标法。 3.中点坐标公式: (1)已知 A ( x1 , y1 ) , B ( x2 , y2 ) ,设点 M ( x, y) 是线段 AB 的中点,则 x ? ___ , y ? ___ 。 (2)公式推导:

1

(三)自学检测: 1.一条平行于 x 轴的线段长为 5 个单位,它的一个端点为 A(2,1) ,则它的另一个端点 B 的坐标 为( )

A.(?3,1)或( 7, 1 )

B.(2,?3)或(2, 7)

C.(?3,1)或( 5, 1 )

D ( . 2, ? 3)或(2, 5)

2.直角坐标平面上连结 (?2,5) 和点 M 的线段的中点为 (1,0) ,则 M 的坐标为(



A.(?4,5)

B.(4,?5)

C.(4,5)

D ( . ? 4, ? 5)

3.在 x 轴上或 y 轴上与两点 (?1,3), (2,4) 等距离的点的坐标为



(四)例题讲解: 题型一:两点间距离公式的应用: 例 1.已知 A(2,?4), B(?2,3) ,求 d ( AB) 。

例 2.已知 A(1,2), B(3,4),C (5,0), 求证: ?ABC 为等腰三角形。

例 3.直线 y ? kx ? b 上的两点的横坐标分别为 x1 , x 2 ,则两点间的距离为 直线 y ? kx ? b 上的两点的纵坐标分别为 y1 , y 2 ,则两点间的距离为
2

; 。

例 4.已知 A(?8,?6), B(?3,?1)和C( ,求证:A,B,C 三点共线。 5, 7)

例 5.已知 A(?1,2), B(1 , 3), 点 P( x,2 x), 求: PA ? PB 取得最小值时点 P 的坐标。

2

2

题型二:中点坐标公式的应用: 例 6:已知平行四边形 ABCD 的三个顶点 A(?3, 0), B(2,?2),C (5,2), ,求顶 D 的坐标。

3

例 7.点 A(3,?5) 关于原点的对称点为 A’

,点 B(? 2, 的对称点 ? 4)关于点M(2, 1 )

B’



题型三:坐标法(解析法)的应用: 例 8.已知平行四边形 ABCD ,求证: AC2 ? BD2 ? 2( AB2 ? AD2 ) 。

(五)当堂检测: 1.已知 ?ABC 的三个顶点是 A(?a,0), B(a,0),C ( ,

a 3 a), ,则 ?ABC 的形状为( 2 2



A . 等腰三角形 B .等边三角形 D .斜三角形 C .直角三角形 2.已知 ?ABC 的三个顶点坐标分别为 A(4,1), B(7,5),C (?4,7) ,求 AC 边上的中线 BE 的长度。

(六)课堂小结: 1. 平面直角坐标系中两点间距离公式及中点坐标公式; 2. 有关对称问题; 3. 利用解析法解决几何问题。
4


相关文章:
...二第二章第一节平面直角坐标系中的基本公式学案
全国中小学“教学中的互联网搜索”优秀教学案例评选 平面直角坐标系中的基本公式教案设计一、教案背景 1,面向学生:高中 2,学科:数学 2,课时:2 3, 学生课前准备...
高中数学人教新课标必修二B版教案平面直角坐标系中的基本公式_...
高中数学人教新课标必修二B版教案平面直角坐标系中的基本公式_高一数学_数学_高中教育_教育专区。平面直角坐标系中的基本公式 教学目标:1、复习平面直角坐标系. 2...
...第二章《2.1.2平面直角坐标系中的基本公式》学案 新...
山东省德州市武城二中高二数学必修二人教 A 版第二章 《2.1.2 平面直角坐 标系中的基本公式》【学习目标】 1.重点:平面直角坐标系中两点间的距离公式和中点...
2.1.1数轴上的基本公式教案教师版
2.1.1数轴上的基本公式教案教师版_高一数学_数学_高中教育_教育专区。2.1.1数轴上的基本公式教案教师版§ 2.1 平面直角坐标系中的基本公式 2.1.1 数轴上的...
...新人教B版必修二 2.1平面直角坐标系中的基本公式(教案)
高一数学必修 2 平面直角坐标系中的基本公式 一、教学目标: 1、了解两点间距离公式的推导过程;熟练掌握两点间的距离公式、中点公式; 2、灵活运用两点间的距离公式...
...第二章《2.1平面直角坐标系中的基本公式》学案 新人...
山东省德州市武城二中高二数学必修二人教 A 版第二章 《2.1 平面直角坐标 系中的基本公式》【学习目标】 1.重点:理解和掌握数轴上的基本公式,向量的数量、长度...
...人教B版必修2第二章 平面直角坐标系中的基本公式_免...
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2第二章 平面直角坐标系中的基本公式 隐藏>> 2.1.2 一、基础过关 平面直角坐标系中的基本公式 1...
自己整理的必修二平面直角坐标系中的基本公式
自己整理的必修二平面直角坐标系中的基本公式_高二数学_数学_高中教育_教育专区。第二章平面解析几何初步(一) 一、数轴上的基本公式 ①向量 AB 是数轴上的任意一...
平面直角坐标系中的基本公式 同步练习
平面直角坐标系中的基本公式 同步练习_数学_高中教育_教育专区。必修2专题平面直角坐标系中的基本公式 同步练习 平面直角坐标系中的基本公式 Y 第Ⅰ卷(选择题,共...
...2.1平面直角坐标系中的基本公式 学案
大连理工大学附属高中数学学案 2.1 平面直角坐标系中的基本公式一.学习要点:平面直角坐标系中的几个基本公式及其简单应用 二.学习过程: 一.数轴上的基本公式 (一...
更多相关标签: