当前位置:首页 >> 高中教育 >>

【天津市2013-2014学年高一寒假作业(10)数学 Word版含答案


【KS5U 首发】天津市 2013-2014 学年高一寒假作业(10)数学 Word 版含答案 第 I 卷(选择题) 请点击修改第 I 卷的文字说明 评卷人 得分

一、选择题(题型注释)

1.若 sin ? ? 0 ,且 tan ? ? 0 ,则 ? 是( A.第一象限 B.第二象限

)角 C.第三象限 D.第四象



2. cos300 的值是(

?

) B. ?

A.

1 2

1 2

C.

3 2

D. ?

3 2

3. ΔABC 中,AB=2,AC=4, A = 120 ,D为BC中点,则AD的长为()

?

A .1

B. 2

C. 3

D.2

4.若 2? ? ? ? ? ,则 y ? cos ? ? 6 sin ? 的最大值和最小值分别是(



A.7,5

B.7,-

11 2
) B.

C.5,-

11 2

D.7,-5

5.下列计算中正确的是( A. C. =8

=10 D.

6.若集合 S={a,b,c}(a、b、c∈R)中三个元素为边可构成一个三角形,那么该三角形一 定不可能是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形 7.下列函数中,与函数 y=x 相等的是( A. B. ) C. D.

8.下列函数是幂函数的是(



A. y=2x

2

B. y=x

﹣2

C. y=x +x

2

D. y=1

第 II 卷(非选择题) 请点击修改第 II 卷的文字说明 评卷人 得分

二、填空题(题型注释)

9.关于 x 的方程 cos x ? sin x ? a ? 0 有实数解,则实数 a 的最小值是
2

____.

10.已知 sin(? ? ) ?

?

4

1 ? ,则 cos( ? ? ) = 4 3



11.函数 f ( x) ? 3sin(2 x ?

?
3

) ? 1 的最小正周期是

.

12.若扇形的弧长与面积的数值都是 4,则其中心角的弧度数的绝对值是________。

o s B 是 a cos C、c cos A 的等差 13.在 ?ABC 中, A、B、C 的对边分别是 a、b、c , 且bc
中项,则角 B ? .

14.将函数 y ? sin x 的图像向左平移 评卷人 得分

? 个单位,那么所得图像的函数表达式为
2

.

三、解答题(题型注释)

15.已知:向量

(1)若 tanα tanβ =16,求证: (2)若 (3)求



垂直,求 tan(α +β )的值; 的最大值.

16.在△ABC 中,设向量 (1)求证:A+B= ;









(2)求 sinA+sinB 的取值范围; (3)若(sinAsinB)x=sinA+sinB,试确定实数 x 的取值范围.

17.已知函数 f(x)=asinx?cosx﹣ (1)求函数的单调递减区间; (2)设 x∈[0,

a

],f(x)的最小值是﹣2,最大值是

,求实数 a,b 的值.

18.已知函数 f(x)=Asin(ω x+φ ) (A>0,ω >0,﹣ 所示. (1)求函数 f(x)的表达式; (2)若 f(α )+f(α ﹣ )=

<φ <

)一个周期的图象如图

,且 α 为△ABC 的一个内角,求 sinα +cosα 的值.

19.(本小题 13 分)

x x x 已知向量 m=( 3sin ,1),n=(cos ,cos2 ) 4 4 4

2π (1)若 m· n=1,求 cos( -x)的值; 3 (2)记 f(x)=m· n,在△ABC 中,角 A,B,C 的对边分别是 a,b,c,且满足(2a-c)cosB =bcosC,求函数 f(A)的取值范围.

20.设函数 f ( x) ? sin(2 x ? ? ) (?? ? ? ? 0), y ? f ( x) 图像的一条对称轴是直线 x ?

?
8

.

(1) 求 ? ;(2) 画出函数 y ? f ( x) 在区间 [0, ? ] 上的图像 (在答题纸上完成列表并作图) .

试卷答案

1.C 2.A 3.C 4.D 5.B 6.D 7.B 8.B 9. ?1 10. ? 11. ? 12.2 13.

1 3

?
3

14. y ? cos x 15.解: (1)∵tanα tanβ =16,∴sinα sinβ =16cosα cosβ , ∵ ∴4cosα ?4cosβ =sinα ?sinβ , ∴ (2)∵ ; 垂直,∴ , ,

即 4cosα sinβ +4sinα cosβ ﹣2(4cosα cosβ ﹣4sinα sinβ )=0, ∴4sin(α +β )﹣8cos(α +β )=0, ∴tan(α +β )=2; (3) ∴ =(sinβ +cosβ ,4cosβ ﹣4sinβ ) , =(sinβ +cosβ ) +(4cosβ ﹣4sinβ )
2 2

=17﹣30sinβ cosβ =17﹣15sin2β ∴当 sin2β =﹣1 时, 取最大值 =

16.解: (1)∵向量







∴sinAcosA﹣sinBcosB=0,即 sin2A=sin2B,解得 2A=2B 或 2A+2B=π , 化简可得 A=B,或 A+B= 故有 A+B= ; ,故 sinA+sinB=sinA+sin( ) , < ,∴1< ]; , sin(A+ )≤ ) ,但 A=B 时有 ,与已知矛盾,故舍去,

(2)由(1)可知 A+B= =sinA+cosA= ∵0<A< sin(A+ <A+

,∴

故 sinA+sinB 的取值范围是(1, (3)由题意可知 x= =

设 sinA+cosA=t∈(1,

],则 t =1+2sinAcosA,故 sinAcosA=

2



代入可得 x=

=

=



=2

故实数 x 的取值范围为:[

,+∞)

17.解: (1)f(x)=asinx?cosx﹣ + = 由 2kπ + ﹣ ≤2x﹣

a

=



+b=asin(2x﹣ ≤2kπ +

)+b. ≤x≤kπ + ,k∈z,

,k∈z,解得 kπ + ,kπ + ≤ ],k∈z. ,∴﹣ ,

故函数的单调递减区间为[kπ + (2)∵x∈[0, ∴f(x)min = 解得 a=2,b=﹣2+ ],∴﹣

≤2x﹣

≤sin(2x﹣

)≤1.

=﹣2,f(x)max =a+b= .

18.解: (1)从图知,函数的最大值为 1,则 A=1. 函数 f(x)的周期为 T=4×( + ) =π .

而 T=

,则ω =2.又 x=﹣ )+φ ]=0. ,则φ = ,

时,y=0,

∴sin[2×(﹣ 而﹣ <φ <

∴函数 f(x)的表达式为 f(x)=sin(2x+

) .

(2)由 f(α )+f(α ﹣ sin(2α + )+sin(2α ﹣ =
2

)= )=

,得 , .

即 2sin2α cos

,∴2sinα cosα = = .

∴(sinα +cosα ) =1+ ∵2sinα cosα =

>0,α 为△ABC 的内角,

∴sinα >0,cosα >0,即 sinα +cosα >0.∴sinα +cosα = .

x x x 19.解:(1)∵m· n=1,即 3sin cos +cos2 =1, 4 4 4 即 3 x 1 x 1 sin + cos + =1, 2 2 2 2 2

x π 1 ∴sin( + )= . 2 6 2 2π 2π π ∴cos( -x)=cos(x- )=-cos(x+ ) 3 3 3 x π =-[1-2sin2( + )] 2 6 1 1 =2· ( )2-1=- . 2 2 (2)∵(2a-c)cosB=bcosC, 由正弦定理得(2sinA-sinC)cosB=sinBcosC. ∴2sinAcosB-cosBsinC=sinBcosC, ∴2sinAcosB=sin(B+C), ∵A+B+C=π, ∴sin(B+C)=sinA,且 sinA≠0, 1 π 2π ∴cosB= ,B= ,∴0<A< . 2 3 3

π A π π 1 A π ∴ < + < , <sin( + )<1. 6 2 6 2 2 2 6 x π 1 又∵f(x)=m· n=sin( + )+ , 2 6 2 A π 1 ∴f(A)=sin( + )+ . 2 6 2 3 故函数 f(A)的取值范围是(1, ). 2

20.解: (1)? x ?

?
8

是函数 y ? f ( x) 的图像的对称轴,

? sin( 2 ?

?
8

? ? ) ? ?1, ?

?
4

? ? ? k? ?

?
2

, k ? Z.

? ?? ? ? ? 0, ? ? ?

(2) 由 y ? sin( 2 x ?

3? )知 4

3? . 4

x

0

? 8
-1

3? 8
0

5? 8
1

7? 8
0

?
? 2 2

y

?

2 2

[0, ? ]上图像是 故函数 y ? f ( x)在区间


相关文章:
【天津市2013-2014学年高一寒假作业(10)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(10)数学 Word版含答案_高中教育_教育专区。【天津市2013-2014学年高一寒假作业(10)数学 Word版含答案【...
【天津市2013-2014学年高一寒假作业(10)数学 ]
【KS5U 首发】天津市 2013-2014 学年高一寒假作业(10)数学 Word 版含答案 第 I 卷(选择题) 请点击修改第 I 卷的文字说明 评卷人 得分 一、选择题(题型...
【天津市2013-2014学年高一寒假作业(1)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(1)数学 Word版含答案_高中教育_教育专区。...10 ,则 a b 1 1 ? ? ___. a b 13.函数 f ( x) ? a x?1 ? ...
【天津市2013-2014学年高二寒假作业(10)数学 Word版含答案
【天津市2013-2014学年高二寒假作业(10)数学 Word版含答案_高中教育_教育专区。【天津市2013-2014学年高二寒假作业(10)数学 Word版含答案【...
【天津市2013-2014学年高一寒假作业(5)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(5)数学 Word版含答案_高中教育_教育专区。...f [ f (n ? 5)](n ? 10) B.4 C.6 D.7 3.已知函数 f(x)= ...
【天津市2013-2014学年高一寒假作业(3)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(3)数学 Word版含答案_高中教育_教育专区。...(2﹣x,﹣y) ,kAB= ,kAC= , ①△ABC 的周长为 10,即 AB+AC+BC=10,...
【天津市2013-2014学年高一寒假作业(8)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(8)数学 Word版含答案_高中教育_教育专区。...故④正确. 故答案为:②③④. 2 2 2 2 2 2 2 10.2 ∵抛物线 y =2...
【天津市2013-2014学年高一寒假作业(7)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(7)数学 Word版含答案_高中教育_教育专区。...x (7 分) (10 分) 3 2 3 2 a a ,解得 x ? log 3 (? ) ; 2b...
【天津市2013-2014学年高一寒假作业(2)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(2)数学 Word版含答案_高中教育_教育专区。...10.某学校高一、高二、高三年级的学生人数之比为 2 : 3 : 4 ,现用分层...
【天津市2013-2014学年高一寒假作业(6)数学 Word版含答案
【天津市2013-2014学年高一寒假作业(6)数学 Word版含答案_高中教育_教育专区。...10.已知 sin(? ? ) ? ? 4 1 ? ,则 cos( ? ? ) = 4 3 。 11....
更多相关标签:
高一寒假作业 | 天津市东丽区寒假打工 | 天津市2017年寒假 | 天津市小学2017年寒假 | 天津市中小学寒假 | 天津市小学2016年寒假 | 天津市小学2017寒假 | 天津市特种作业证查询 |