当前位置:首页 >> 数学 >>

三视图及其表面积体积


三视图及其表面积体积
一、选择题

A 处出发,经正方体的表面,按最短路线爬行到达顶点 C1 位置, 1.一只蚂蚁从正方体 ABCD ? A 1B 1C1D 1 的顶点
则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()

A.①②B.①③C.③④D.②④ 2.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为 2 的两个全等的等腰直角三角形,则该几何体的 外接球的表面积是()

A.

8 3 8 B. 4 3π C. 12π D. π 3 3

3.某空间几何体的三视图如图所示,该空间几何体的体积是()

A.

20 40 50 B.10C. D. 3 3 3

4.已知某锥体的正视图和侧视图如图,其体积为

2 3 ,则该锥体的俯视图可以是() 3

1

A.

B.

C.

D.

5.若某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为()

3 2 3 5 C. π ? 3 D. π ? 3 2 2
A. π B.π ? 3 6.已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为()

A. 6? ? 12 B. 6? ? 24 C. 12? ? 12 D. 24? ? 12 7.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是() A.圆柱 B.圆锥 C.棱锥 D.棱柱 8.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为 2 的正方形,则该机器零件的体积为

8?
A.

π 2 8? π 3 3 B.
2

8 16 8? π 8? π 3 D. 3 C.
9.某几何体的三视图如图所示,图中的四边形都是边长为 2 的正方形,两条虚线互相垂直,则该几何体的体积是 ()

A.

20 16 B. 3 3

C. 8 ?

?

6

D. 8 ?

?
3

10.一个三棱锥的三视图如图所示,则该三棱锥的表面积为()

A. 2 ? 2 5 ? 14 B. 16 ? 2 14 C. 8 ? 2 14 D. 8 ? 14 11.已知某几何体的三视图如图所示,则该几何体的表面积为()

A.16B.26 C.32D. 20 ?

25 3 4

12.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是() A.圆柱 B.圆锥 C.棱锥 D.棱柱
3

13.已知某棱锥的三视图如图所示,则该棱锥的表面积为()

A. 2 ? 5 B. 3 ?

5 5 C. 2 ? D. 3 ? 5 2 2

14.已知几何体的三视图及其尺寸如图(单位:cm) ,则该几何体的表面积和体积分別为()

A. 24? cm2 ,12? cm3 B. 15? cm2 ,12? cm3 C. 24? cm2 ,36? cm3 D.以上都不正确 15.正方体 ABCD﹣A1B1C1D1 中 E 为棱 BB1 的中点(如图),用过点 A,E,C1 的平面截去该正方体的上半部分,则剩余 几何体的左视图为()

A.

B.

C.

D.
4

16. 如果一个几何体的三视图如图所示, 主视图与左视图是边长为 2 的正三角形、 俯视图轮廓为正方形, (单位: cm) , 则此几何体的表面积是()

主视图

左视图

俯视图
2 2 2 2 A.8 cm B. 4 3 cm C.12 cm D. 4 ? 4 3 cm

17.已知某三棱锥的三视图如图所示,则该三棱锥的体积为()

A.8B.24C.

32 96 D. 5 5

18.三棱锥 S﹣ABC 及其三视图中的正视图和侧视图如图所示,则棱 SB 的长为()

A.2 11 B.16 3 C. 38 D.4 2 19.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球 B.三棱锥 C.正方体 D.圆柱 20.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨, 加工成球,则能得到的最大球的半径等于 ()

A.1B.2 C.3D.4 21.利用斜二测画法得到的: ①三角形的直观图是三角形;
5

②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④菱形的直观图是菱形. 以上结论正确的是() A.①②B.① C.③④D.①②③④

评卷人

得分 二、解答题

22.已知平面五边形 ADCEF 是轴对称图形(如图 1),BC 为对称轴,AD⊥CD,AD=AB=1, CD ? BC ? 3 ,将此五 边形沿 BC 折叠,使平面 ABCD⊥平面 BCEF,得到如图 2 所示的空间图形,对此空间图形解答下列问题.

(1)证明:AF∥平面 DEC; (2)求二面角 E ? AD ? B 的余弦值. 23.一个几何体的三视图如图所示(单位长度为: cm )

(1)求该几何体的体积; (2)求该几何体的表面积. 评卷人 得分 三、填空题 24.已知正 ?ABC 的边长为 a ,那么的平面直观图 ?A?B ?C ? 的面积为.

6

参考答案 1.D 【解析】 试题分析:最短距离是正方体侧面展开图,即矩形 ABCC1B1 A 、或矩形 ABCC1D1DA 1 A 的对角线 AC1 (经过 BB1 ) 的对角线 AC1 (经过 CD ) ,故视图为②④. 考点:最短距离. 2.C 【解析】 试题分析:由三视图可知该几何体为四棱锥,底面为正方形,边长为 2,有一侧棱垂直于底面,侧棱为 2,因此外 切球直径为 2 3 ? r ? 3 ? S ? 4? r 2 ? 12? 考点:三视图与几何体体积 3.C 【解析】 试题分析:此几何体是三棱锥,底面是直角三角形面积为 S ?

1 ? 5 ? 4 ? 10 ,三棱锥的高是 4,所以几何体的体积 2

V ?

1 40 ? 10 ? 4 ? ,故选 C. 3 3

考点:三视图 4.C 【解析】 试题分析:选项 C 的体积 V ?

1 1 2 3 ? ? 2? 2? 3 ? ,故选 C. 3 2 3

考点:1、三视图;2、锥体的体积. 【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系: 主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相 等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体的面积公式. 5.C 【解析】 试题分析:由三视图可知该几何体为一个半圆锥,即由一个圆锥沿中轴线切去一半面得 S ?

1 1 ? 2? 3 ? 2 2

1 3 ?? ? ? 2? ?1 ? ? ? 3 ,故选 C. 2 2
考点:1、三视图;2、表面积. 【方法点晴】本题主要考查三视图和表面积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视 图与俯视图长应对正 (简称长对正) ,主视图与左视图高度保持平齐 (简称高平齐) ,左视图与俯视图宽度应相等 (简 称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握球和锥体的表面积公式. 6.A 【解析】 试题分析:由三视图可知,该几何体为一组合体,它由半个圆柱和一个底面是直角三角形的直棱柱组成,故该几何 体的体积 V ?

1 1 ? ? ? 22 ? 3 ? ? 2 ? 4 ? 3 ? 6? ? 12 ,故选 A. 2 2

考点:1.三视图;2.多面体与旋转体的体积. 7.B
7

【解析】 试题分析:当棱锥和棱柱分别为正四棱锥和正四棱柱时,会出现正方形;圆柱的横截面为长方形,当其底面直径和 高相等时,就是正方形;对于圆锥,三视图可能出现的有:圆、三角形.所以选 B. 考点:三视图. 8.A 【解析】此几何体为组合体,下面是正方体,上面是球的

1 ,且球的半径为 1,所以体积 4

1 4 π V ? 2 ? 2 ? 2 ? ? π ?13 ? 8 ? ,故选 A. 4 3 3
9.A 【解析】 试题分析:由三视图知原几何体是一个棱长为 2 的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高
3 2 为 1 ,如图所示,∴该几何体的体积为 2 ? ? 2 ? 1 ? 8 ?

1 3

4 20 ? ,故选 A. 3 3

考点:由三视图求面积、体积. 10.C 【解析】 试题分析:由三视图作出三棱锥的直观图 , 如图 , ?ABC , ?ADC 是全等的直角三角形 , ?ABC =?ADC =90 ,
0

1 ABC=AD= 5 ? 4 ? 3, BC ? 2 , 故 S?ABC ? S?ADC ? ? 2 ? 3 ? 3 , 在 Rt ?BCD 中 , BC ? CD ? 2 , ?BCD=900 , 2 1 1 所以 S ?BCD ? ? 2 ? 2 ? 2 ,在 ?ABD 中, AB ? AD ,高 AE ? 9 ? 2 ? 7 ,所以 S ?BAD ? ? 2 2 ? 7 ? 14 ,故 2 2
表面积为所以 3 ? 3 ? 2 ? 14 ? 8 ? 14 ,选 D.

考点:由三视图求表面积. 11.C 【解析】 试题分析:由图可知,该几何体为三棱锥,直观图故下图所示,由图可知,表面积为

S?ABC ? S?ACD ? S?BCD ? S?ABD ?

1 1 1 1 ? 4 ? 5 ? ? 3 ? 4 ? ? 3 ? 4 ? ? 5 ? 4 ? 32 . 2 2 2 2
8

A

B

5

5 3

4
D

4
C

考点:三视图. 12.B 【解析】 试题分析:当棱锥和棱柱分别为正四棱锥和正四棱柱时,会出现正方形;圆柱的横截面为长方形,当其底面直径和 高相等时,就是正方形;对于圆锥,三视图可能出现的有:圆、三角形.所以选 A. 考点:三视图. 13.D 【解析】 试题分析:根据三视图可知,几何体是一条侧棱垂直于底面的四棱锥,底面是边长为 1 的正方形,如下图所示,该 几何体的四个侧面均为直角三角形,侧面积 S侧 =2 ? ( 面积为 S ? 3 ? 5 ,故选 D.

1 1 ?1 ? 5 ? ?1? 2)=2+ 5 ,底面积 S底 =1 ,所以该几何体的表 2 2

考点:三视图与表面积. 【易错点睛】 本题考查三视图与表面积, 首先应根据三视图还原几何体, 需要一定的空间想象能力, 另外解本题时, 也可以将几何体置于正方体中,这样便于理解、观察和计算.根据三视图求表面积一定要弄清点、线、面的平行和 垂直关系,能根据三视图中的数据找出直观图中的数据,从而进行求解,考查学生空间想象能力和计算能力. 14.A 【解析】
2 2 试题分析:根据三视图可知该几何体是圆锥,其底面半径为 r ? 3 ,母线长为 5 ,高为 h ? l ? r ? 4 ,所以该几
2 何体的表面积为 S ? ? rl ? 15? cm ,体积为 V ?

1 2 ? r h ? 12? cm3 ,故选 A. 3

考点:三视图与几何体的表面积与体积. 【方法点晴】本题主要考查了三视图与几何体的表面积与体积,属于中档题.三视图往往需要根据三个视图还原几 何体,该几何体为圆锥,这是解题的关键,根据三视图的规则,主俯同长,左俯同宽,主左同高,据此可知圆锥的 底面半径为 r ? 3 ,母线长 l ? 5 ,根据轴截面可得圆锥的高 h ,根据圆锥的表面积和体积公式求解即可. 15.C
9

【解析】 试题分析:过点 A, E, C1 的平面截去该正方体的上半部分后,剩余部分的直观图如图,则该几何体的左视图为 C.所 以 C 选项是正确的.

考点:三视图. 16.C 【解析】 试题分析:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为 2 ,故此几何体的表面积

1 2 S ? 2 ? 2 ? 4 ? ?2 ?2 ?1c 2m ,故选:C. 2
考点:棱柱、棱锥、棱台的体积;由三视图求面积、体积. 17.C 【解析】 试题分析:由三视图知,该几何体是一个以俯视图为底面的三棱锥,底面面积 S ?

1 12 ? 5? ? 6 , 高 2 5

12 16 1 32 h ? 42 ? ( )2 ? ,所以该几何体的体积 V ? Sh ? ,故选 C. 3 5 5 5
考点:1、三棱锥的三视图书馆 2、三棱锥的体积. 【方法点睛】解答此类问题的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.三视图中“正侧 一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面 之间的位置关系及相关数据. 18.D 【解析】 试题分析:由已知中的三视图可得 SC⊥平面 ABC, 且底面△ABC 为等腰三角形, 在△ABC 中 AC=4,AC 边上的高为 2 3 , 故 BC=4, 在 Rt△SBC 中,由 SC=4, 可得 SB= 4 2 考点:简单空间图形的三视图 19.D 【解析】 试题分析:球的三视图都是圆,如果是同一点出发的三条侧棱两两垂直,并且长度相等的三棱锥的三视图是全等的 等腰直角三角形,正方体的三视图可以是正方形,但圆柱的三视图中有两个视图是矩形,有一个是圆,所以圆柱不 满足条件,故选 D.
10

考点:三视图 20.B 【解析】 试题分析:由三视图可知,这是一个三棱柱,内切球在正视图的投影是正视图的内切圆,设其半径为 r ,根据三角 形面积公式有

1 1 ? 6 ? 8 ? 10 ? r ? ? 6 ? 8, r ? 2 . 2 2

考点:几何体的内切球. 21.A 【解析】 试题分析:由斜二测画法的规则可知:根据平行性不变,所以①正确;根据平行性不变,所以②是正确的;正方形 的直观图是平行四边形,所以③错误;因为平行与 y 轴的线段长度减半,平行于 x 轴的线段长度不变,所以④是错 误的,故选 A. 考点:斜二测画法. 22.见解析 【解析】 (1)如图,过 D 作 DG⊥BC 于点 G,连接 GE, 因为 BC 为对称轴,所以 AB⊥BC,则有 AB∥DG,又 AB?平面 ABF, 所以 DG∥平面 ABF,同理 EG∥平面 ABF.又 DG∩EG=G,所以平面 DGE∥平面 ABF. 又平面 AFED∩平面 ABF=AF,平面 AFED∩平面 DGE=DE,所以 AF∥DE, 又 DE?平面 DEC,所以 AF∥平面 DEC.

(2) 如图, 过 G 作 GH⊥AD 于点 H, 连接 HE.由 (1) 知 EG⊥BC, 又平面 ABCD⊥平面 BCEF, 平面 ABCD∩平面 BCEF=BC, 所以 EG⊥平面 ABCD,所以 EG⊥AD. 又 EG∩HG=G,所以 AD⊥平面 EHG,则 AD⊥HE, 则∠EHG 即为二面角 E ? AD ? B 的平面角.

由 AD⊥CD,AD=AB=1, CD ? BC ? 3 ,得 G 为 BC 的中点,

GH ?

3 3 3 3 7 EG ? EH ? 2, 4 , 4 .

因为 △EGH 为直角三角形,所以

cos?EHG ?

21 7 ,

21 则二面角 E ? AD ? B 的余弦值为 7 .
23. (1) V ?

224 ; (2) S ? 80 ? 16 2 . 3

【解析】 试题分析: (1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体 .由此求得几何体的体积为

V?

224 ; (2)正方体部分一共 5 个面,面积是 4 ? 4 ? 5 ? 80 .四棱锥的侧面三角形的高 h ? 22 ? 22 ? 2 2 ,所 3
11

以四棱锥侧面积为 4 ?

1 ? 4 ? 2 2 ? 16 2 ,所以表面积为 80 ? 16 2 . 2

试题解析: (1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体.且正四棱锥的底面边长为 4,四棱锥的 高为 2, 所以体积 V ?

1 224 ? 4? 4? 2 ? 4? 4? 4 ? . 3 3

(2)由三视图知,四棱锥的侧面三角形的高 h ? 22 ? 22 ? 2 2 . 该几何体表面积为 S ? 5 ? 4 ? 4 ? 2 ? 4 ?

1 ? 4 ? 2 2 ? 80 ? 16 2 . 2

考点:三视图,立体几何求表面积和体积. 24.

6 2 a 16

【解析】 试题分析: 如图所示是实际图形和直观图, 由图可知,A?B? ? AB ? a, O?C? ?

1 3 OC ? a ,在图中作 C?D? ? A?B? , 2 4

垂足为 D? ,则 C?D? ?

2 6 1 1 6 6 2 O?C? ? a .? S?A?B? C? ? A?B? ? C?D? ? ? a ? a? a . 2 8 2 2 8 16

考点:斜二测画法. 【方法点晴】 本题主要考查斜二测画法, 属于中等题型.应注意以下步骤: 取 O 点为原点, 以水平方向的直线为 x 轴, 竖直方向的直线为 y 轴,取任一点 O ,画出相应的 x 轴、 y ' 轴,使 ?x'O' y ' ? 45? .(1)在已知图形中,取互相垂
'
'

直的 x 轴和 y 轴, 两轴相交于点 O , 画直观图时, 把它们画成对应的 x 和 y ' 轴, 两轴相交于点 O , 且使 ?x'O' y ' ? 45?
'

'

(或 135 ) ,它们确定的平面表示水平面; (2)在已知图形中平行于 x 轴、 y 轴的线段,在直观图中分别画成平行 于 x 轴或 y ' 轴的线段; (3)在已知图形中平行于 x 轴的线段,在直观图中保持长度不变;平行于 y 轴的线段,长度
'

0

为原来的一半; (4)如需第三维则在已知图形中平行于 z 轴的线段,在直观图中保持长度不变.

12


相关文章:
三视图与体积和表面积
三视图体积和表面积_高一数学_数学_高中教育_教育专区。立体几何:三视图体积和表面积的综合应用 三视图与表面积和体积 一、选择题 1.一个几何体的三视图...
三视图、表面积、体积
三视图表面积体积 - 知识点回顾: 1、棱柱、棱锥、棱台的定义、注意事项、图像的画法 棱柱 棱锥 棱台 2、圆柱、圆锥、圆台的定义、注意事项、图像的画法 ...
三视图和直观图、表面积和体积
三视图和直观图、表面积和体积 知识点 1:中心投影与平行投影 (1) 投影、投影线和投影面:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种...
高考专题三视图与面积体积
高考专题三视图面积体积 - 高考专题三视图面积体积 一.选择题(共 16 小题) 1.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表...
立体几何三视图及体积表面积的求解
立体几何三视图及体积表面积的求解_高二数学_数学_高中教育_教育专区。立体几何三视图及体积表面积的求解一、空间几何体与三视图 1. (吉林省实验中学 2013—2014 ...
三视图求几何体的表面积与体积
三视图求几何体的表面积体积_数学_高中教育_教育专区。三视图求几何体的表面积体积一、选择题 1.若一个几何体的三视图如图所示,则此几何体的体积为( ) (...
三视图求体积面积
三视图体积面积 - 三视图表面积体积 1.一个三棱锥的三视图如下图所示,则该几何体的体积为 A. 1 B. 4 3 3 C. 2 D. 8 3 3 2.一个三棱锥的三...
由三视图求表面积和体积
三视图表面积和体积_高二数学_数学_高中教育_教育专区。1、如图,一个空间几何体的主视图和侧视图都是边长为 1 的正三角形,俯视图 是一个圆,那么几何体的...
三视图与几何体的体积表面积的计算
32 ? 25 7、 (2010 海淀一模 5. 一个体积为 12 3 的正三棱柱的三视图如 )图所示,则这个三棱柱的左视图的面积为() A. 6 3 C. 8 3 B.8 D.12 ...
三视图体积、表面积计算练习
三视图体积表面积计算练习 1.若某空间几何体的三视图如图 1 所示,则该几何体的体积为___; 表面积为___ 2 2 2 2 侧(左)视图 2 正(主)视图 图1 俯...
更多相关标签: