当前位置:首页 >> 数学 >>

24 平面向量的数量积


24 平面向量的数量积 改编:周海军 一、知识要点 1.掌握两个非零向量夹角的概念和范围; 2.平面向量数量积的定义及运算; 3.平行向量数量积的性质及应用; 4.平面向量数量级的运算律; 5.平面向量数量积的坐标表示. 二、课前预习 1.已知向量 a ? (k ,3) , b ? (1,4) , c ? (2,1) ,且 (2a ? 3b) ? c ,则实数 k ? . 2.已知 | a |? 2, | b |? 5, a ? b ? ?3 ,则 | a ? b |? . 3.等腰直角三角形 ?ABC 中, | AB |?| AC |? 2 ,则 AB ? BC ? . 4.平面向量 a ? (1,2) , (m? R ) , 且 c 与 a 的夹角等于 c 与 b 的夹角, 则m? c ? ma ? b b ? (4,2) , . 5.设 O 为 ?ABC 内一点, OA? OB ? OB ? OC ? OC ? OA ,则 O 是 ?ABC 的 心. 6.若等边 ?ABC 的边长为 2 3 ,平面内一点 M 满足 CM ? 1 2 CB ? CA ,则 MA ? MB ? 6 3 . 7.已知 a ? (2,3) , b ? (?1,?2) , c ? (2,1) ,试求 a ? (b ? c) 和 (a ? b) ? c 的值. 三、典例剖析 例 1. (1)已知 a, b 是两个非零向量,且 | a |?| b |?| a ? b | ,则 a 与 a ? b 的夹角为 . 1 (2)已知平面向量 a, b(a ? 0, a ? b) 满足 | b |? 1 ,且 a 与 b ? a 的夹角为 120 ,则 | a | 的取值范围是 0 . ?x ? y ? 3 ? 0 ? (3)已 知 P ( x, y ) 满 足 约 束 条 件 ? x ? y ? 1 ? 0 , O 为 坐 标 原 点 , A(3,4) , 则 | OP | cos?A OP的 最 大 值 ? x ?1 ? 0 ? 是 . (4)若向量 a ? 3b 与 7a ? 5b 垂直, a ? 4b 与 7a ? 2b 垂直,非零向量 a 与 b 的夹角是 . 例 2.已知 a ? (1,2) , b ? (1,1) ,且 a 与 a ? ? b 的夹角为锐角,求实数 ? 的取值范围. 例 3.已知向量 a ? (sin x, ) , b ? (cosx,?1) (1)当向量 a 与向量 b 共线时,求 tan x 的值; (2)求函数 f ( x) ? 2(a ? b) ? b 的最大值,并求函数取得最大值时的 x 的值. 3 2 例 4.已知非零向量 AB 与 AC 满足 ( AB | AB | | AC | ? AC ) ? BC ? 0 且 AB | AB | | AC | ? AC ? 1 ,试判断 ?ABC 的形状. 2 思考:求证:若 AP ? ? ( AB | AB | cos B ? AC | AC | cos C ) , ? ? [0,??) ,则点 P 的轨迹一定经过 ?ABC 的垂心. 四、作业反馈 2 1. | a |? 6 3, | b |? 1, a ? b ? ?9 ,则 a 与 b 的夹角是 . 2.已知下列各式,其中正确的序号是 2 ①| a | ? a ; 2 . 2 2 2 ④ ( a ? b) ? a ? 2a ? b ? b . 2 2

相关文章:
24-2.4.1平面向量数量积的物理背景及其含义
24-2.4.1平面向量数量积的物理背景及其含义_数学_高中教育_教育专区。2.4.1 平面...2.4.1 平面向量数量积的物理背景及其含义(第 1 课时) 教材分析本节内容是必...
24平面向量的数量积及运算律
教学难点: 教学难点:平面向量数量积的应用 教学过程: 教学过程 一、复习引入: 复习引入: 1.两个非零向量夹角的概念 2.平面向量数量积(内积)的定义: 3. “...
24第二章 平面向量数量积的坐标表示
24第二章 平面向量数量积的坐标表示_农学_高等教育_教育专区。教学课题:平面向量数量积的坐标表示 三维目标: 1.知识与技能: ⑴理解掌握平面向量数量积的坐标表达式...
高三数学24 平面向量的数量积及平面向量的应用 学案
1. 两个向量的夹角 §24 平面向量的数量积及平面向量的应用要求 A B √ C √ 平面向量的数量积 平面向量的垂直 (1)定义:已知两个___向量 a 和 b ,作 ...
平面向量的数量积
平面向量的数量积_数学_高中教育_教育专区。授课主题 平面向量的基本定理及坐标表示...4 ? ? ? 24 . ∴ tan A ? ? ,∴ tan 2 A ? 9 4 7 1? 16 【...
平面向量数量积运算的解题方法与策略
平面向量数量积运算的解题方法与策略平面向量数量积运算一直是高考热点内容, 它在...3(3x+4y)+4(4x+3y)=0 即 25x+24y=0①222又|xa+yb|=1 ? |xa+yb...
2017-2018学年高中数学第24课时平面向量数量积的物理背...
2017-2018学年高中数学第24课时平面向量数量积的物理背景及其含义练习新人教A版必修4课件_教育学_高等教育_教育专区。第 24 课时 平面向量数量积的物理背景及其含义...
...第24练(平面向量数量积运算三类经典题型)
【考前三个月】2015届高考数学(人教理)必考题型过关练:专题4 第24练(平面向量数量积运算三类经典题型)_高三数学_数学_高中教育_教育专区。第 24 练 关于平面向量...
2014年12月22日平面向量数量积的坐标表示
2014 年 12 月 22 日平面向量数量积的坐标表示 一.填空题(共 17 小题) 1...求向量 与 的夹角θ的最大值. 24.已知 a、b 都是非零向量,且( +3 )与...
平面向量的数量积含答案
§ 5.3 平面向量的数量积(时间:45 分钟 满分:100 分) 一、选择题(每小题...(每小题 6 分,共 24 分) π 6.若向量 a,b 满足|a|=1,|b|=2 且 ...
更多相关标签: