当前位置:首页 >> 理学 >>

针对土壤重金属污染评价的模糊数学模型的改进及应用


土  壤  通  报 Vol . 38, No. 1 第 38 卷第 1 期                             Feb. , 2007 Chinese Journal of Soil Science 2007 年 2 月

针对土壤重金属污染评价的模糊数学 模型的改进及应用
窦  磊
1a, 1b

,周永章

1a, 1b

,王旭日 ,杨志军

2

1a, 1b

,彭先芝 ,李秀娟

3

3

( 1. 中山大学 a1 地球科学系 , b. 地球环境与地球资源研究中心 ,广东 广州 510275; 2. 大连自然博物馆 ,辽宁 大连 116023; 3. 中国科学院 广州地球化学研究所有机地球化学国家重点实验室 ,广东 广州 510275)

   摘  要 : 土壤重金属污染评价是土壤重金属污染研究的重要课题 。本文改进了针对土壤重金属污染评价的模糊数学 模型和评价因子权重的计算方法 ,提出了基于污染物浓度和毒性的双权重因子的模糊综合评价法 。该法慎重考虑了各级 标准界限的模糊性 ,较好继承了模糊数学方法用于土壤重金属评价的优点 。它从定性和定量两方面 ,比较客观地反映污染 因子对土壤环境质量的影响 。采用双权重系数法确定各指标的权重 ,综合考虑评价因子的浓度和毒性 ,不但在大多数情形 下与对比的其它方法结果相一致 ,而且可以克服其它几种方法出现的误判 ,提高了评价结果的分辨性 ,使评价结果更全面 、 更能真实地反映土壤重金属污染实际状况 。 关  键  词 : 土壤 ; 重金属污染评价 ; 双权重因子 ; 模糊数学模型 ; 模糊综合评价模型 中图分类号 : X825; X113. 3     文献标识码 : A     文章编号 : 0564 2 3945 (2007) 01 2 0101 2 05

   土壤是人类赖以生存的最基本的自然资源之一 , 也是生物可利用重金属的一个重要蓄积库 , 其所含的 [1] 重金属通过食物链被植物 、 动物数十倍的富集 , 通 [ 2, 3 ] 过多种途径直接或间接地威胁人类安全和健康 。 随着工业 、 城市污染的加剧和农用化学物质种类 、 数量 的增加 ,土壤重金属污染日益严重 。这种形势下 迫切需要对所处的土壤环境质量做出客观 、 切实的综 合评价 ,以此反映经济 、 技术发展对土壤质量 、 农业生 产、 生态环境乃至人类健康的影响 ,并为土地的可持续 利用提供理论依据 。 在我国当前大规模农业地质环境调查活动中 , 有 关土壤重金属污染状况评价工作业已列入议事日程 , 相关学科学者正在积极探讨简便有效实用的评价方 法 。目前 ,关于土壤重金属污染评价的方法较多 ,如综 合污染指数法 、 聚类分析法 、 层次分析法和模糊数学 等 。模糊数学自 1965 年由 Zadeh提出以来 ,已得 到较充分的发展 ,同时被广泛用于生产实践中 ,而且在 土壤环境质量评价中其分辨率明显高于其它评价方 [ 13 ] 法 。定义土壤重金属污染级别是一些模糊的概念 , 而模糊综合评价对于解决这些具有模糊边界的问题最 为有效 ,并且能控制评价结果的误差 , 现今模糊 数学在环境评价中已得到很大发展 , 产生了各种不同 [ 16 ] 的模糊评价方法 。不同的评价方法各有其特点 , 但 在评价结果的精确性方面 , 仍有进一步研究的必要 。
收稿日期 : 2006 205 2 28; 修订日期 : 2006 2 08 2 17
[ 14, 15 ] [ 6 - 12 ] [ 4, 5 ]

其中突出的一点是这些评价方法仅仅考虑了重金属污 染物浓度超标的情况 ,未考虑重金属本身的毒性作用 , 这就有可能掩盖有些浓度低但毒性大的有毒物的污染 作用 。本文采用基于双权重因子的模糊数学模型综合 [ 17 ] 考虑重金属浓度和毒性作用 ,既反映污染物的浓度 超标状况 ,又反映污染物的毒性作用 ,因而评价更为全 面、 合理 。

1  模糊综合评价模型与方法
模糊数学方法可以通过隶属度描述土壤重金属污 染状况的渐变性和模糊性 , 使评价结果更加准确可 [ 11, 12 ] 靠 。 应用模糊数学方法进行污染评价的关键问题 是如何确定各指标的权重 。双权重因子通过超标浓度 和毒性相结合来寻找各指标的最佳权重 。采用此方法 可以增加评价结果的分辨性和指示意义 。以下将进行 详细分析 。
1. 1   评价模型的确定

模糊综合法用隶属度描述模糊的污染分级界线 , 各评价等级的隶属度再以各评价因子的权重修正 , 则 得到评价样品对评价等级的隶属度 。 设 A 为各评价因子对评价等级的隶属度 , R 为各 评价因子的权重构成的向量 , B 为评价样品对评价等 级的隶属度 ,则得到如下数学模型 :
[ 18 - 20 ]

基金项目 : 广东省科技厅重大专项攻关项目 ( 2004A3030800, 2005A30402006, 2002C3201) 及国家教育部支持中山大学 985 工程产业与区域发展研
究创新基地 ( 105203200400010) 资助

作者简介 : 窦   磊 ( 1979 - ) ,男 ,宁夏吴忠人 ,博士研究生 ,主要研究生态环境地球化学 。 E - mail: doulei326@126. com

102

土  壤  通  报                       38 卷

  B = R ?A

( 1)

同样 ,可以得到其它样品的各参评因子的权重向 量。 1. 4   模糊综合评价模型的确立和综合评价 将权重向量 R 和隶属度向量 A 代入所建立的数 学模型式 ( 1 ) , 即可得到各评价样品对评价等级的隶 属度 B ,根据最大隶属度原则确定样品所属的污染等 级。

1. 2   评价因子的隶属度函数及模糊关系矩阵的建立

为了进行模糊运算 ,需要确定隶属度函数 ,并以隶 属度来描述土壤污染状况的模糊界线 。 设土壤环境质 量分为 m 个级别 ,则 : V = ( Ⅰ, Ⅱ, …, m ) 这里用降半梯形分布来刻画隶属度 : ( X Φ S ij ) 1  X ij = ( S ij + 1 - X ) / ( S ij + 1 - S ij )   ( S ij < X Φ S ij + 1 ) ( 2 )
0
( X Ε S ij + 1 )

2  模型的验证
为便于计算结果与其它评价方法进行对比 , 本文 [ 21 ] 引用文献 中的的实测数据 (表 1 ) 进行分析 。同时 评价基准的选择也是区域土壤环境质量评价的关键 , 采用不同的评价基准得到的评价结果存在明显差异 , [ 22 ] 有时甚至会得出与实际不符的错误判断 。研究表 明不 加 考 虑 的 选 用 国 家《土 壤 环 境 质 量 标 准 》 ( GB15618 - 1995 ) 进行土壤环境评价往往会出现偏 差 ,鉴于此 , 本次评价仍采用土壤重金属元素背 [ 21 ] 景值和临界含量确定的评价标准 (表 2 ) 。另外根 据 Hakanson 制定的标准化重金属毒性响应系数 ,分别 对各重金属对生物的毒性指数赋值 (表 2 ) ,指数越小 , 代表毒性越大 。
2. 1   隶属度函数的确定
[ 23, 24 ]

式中  Xij — 污染因子的隶属度 ;  Sij — 某一样品各污染因子 i在 j级指标 ( i = 1, 2, 3, …, n; j = 1, 2, 3, …, m ) ;  X — 各污染因子的实测浓度 。 由此可得表示评价因子即指标 i 对级别 (状态 ) j 的隶属度矩阵 :
X11  … X1m

 A = …   …

( 3)

Xn1  … Xmm 同样可求得其它样品对各污染等级的隶属度矩 阵。 1. 3   各评价因子权重向量 R 的确定 现行重金属污染评价方法一般采用污染物浓度超 标赋权法 。对于不同重金属 , 因污染物个体的毒性级

别不同 ,污染物浓度超标赋权法有可能掩盖某些低浓 度有机组分的毒性作用 ,因此 ,有必要将有重金属的毒 性级别纳入权重考虑 , 以反映重金属浓度和毒性的综 合作用 。将污染物浓度和毒性级别指数加权叠加 , 并 作归一化处理 ,得到某污染组分的权重公式 :
Ci n Ci ri = / ∑ fi i = 1 fi Ci = xij
j=1

根据表 1、 表 2 的数据 , 利用公式 ( 2 ) 计算各重金 属元素对应于各土壤重金属环境质量等级的隶属函 数 ,得到关系模糊矩阵 。如样品 1 为经计算后得到的 关系模糊矩阵为 :
0 01485 A= 1 01966 1 0 013978 01515 0 01034 0 01974 016022 0 0 0 0 01026 0 0 0 0 0 0 0 0 0 0 0 0

∑S ij

m

/∑m
i=1

n

xij

( 4)

j=1

∑S ij

式中   xi — 某样品第 i个污染因子的实测浓度 ,
mg kg ;
- 1

2. 2   计算参评因子权重

   fi — — — 第 i个污染因子的毒性级别指数 ;    R i — 某样品第 i个污染因子的权重值 ,且
i =1

按照公式 ( 4 ) ,将表 ( 1 )表 ( 2 )数据代入计算 ,得到 各采样点各个重金属参评因子的权重值 R i (表 3 ) 。
2. 3   模糊矩阵复合运算及模型评价 依照模型 ( 1 ) 中确立的映射关系 , 将各样品的模

∑Ci = 1, ∑ ri = 1。
i=1

n

n

将各污染因子的实测浓度值 、 毒性系数和选定的 ( ) 评价标准分别代入公式 4 , 可得到各污染因子的权 重值 ,由此组成某个样品各参评因子的权重向量 : ( 5) R = [ r1 , r2 , … , rn〗

糊关系矩阵和对应的权重系数 (表 3 ) 分别代入 , 可得 出各评价样品对评价等级的隶属度 , 又根据最大隶属 度原则 ,确定各样品的的污染程度 ,此即为土壤环境质 量分级 (表 4 ) 。

1 期            窦  磊等 : 针对土壤重金属污染评价的模糊数学模型的改进及应用

103

表 1  评价区土壤环境中重金属含量的实测值 (mg kg - 1 )
Table 1 The contents of heavy metal elements in soil environment

强 (毒性系数最小 )的 Hg和 Cd 超标最严重 ,因此将其 划分为 Ⅰ 级污染显然是不合理的 , 所以只有灰色聚类 法、 非线性可拓综合法和改进模糊数学法的评价结果 最合理 。但对于位于一炼锌厂附近的样品 7, Cd、 Zn 都已严重超标 ,而且毒性最强且植物利用率较高的 Cd 含量分别达到 Ⅲ 级标准的 13. 7 倍 , Ⅴ 级标准的 4 倍之 多 ,所以样点 7 划分为 Ⅴ 级污染是合理的 ,从评价结果 对比中可以看出灰色聚类法出现了明显的误判 。同样 对于样品 5 各评价因子的实测浓度值超过 Ⅱ 级标准的 超标率也为 67% ,而非线性可拓综合法将其划分为 Ⅱ 级污染也是不合理的 。 由此可见 ,本文所采用的双权重模糊综合评价法 应用土壤重金属污染评价 ,最终结果更为可信 ,更能真 实的反映出土壤本身受重金属污染的程度 。
表 4  模糊综合评价结果
Table 4 The results of fuzzy comp rehensive evaluation

采样点
1 2 3 4 5 6 7 8 9 10

Cd 0. 4617 0. 304 0. 2200 0. 1000 0. 8700 0. 4840 8. 2000 0. 1200 0. 1200

Hg 0. 178 0. 225 0. 2300 0. 1600 0. 3000 0. 1900 0. 6000 0. 0300 0. 1100 0. 0600

Pb 22. 87 24. 62 24. 2000 14. 7700 37. 1500 20. 7300 50. 0000 26. 3600 21. 4500 16. 9000

Cr 75. 72 75. 71 61. 0000 73. 5900 92. 5900 88. 1100 71. 6200 68. 1700 59. 8000

Cu 26. 35 28. 76 28. 9000 22. 8900 44. 2600 22. 7800 28. 2400 21. 8000

Zn 119. 95 118. 53 86. 6000 76. 9600 98. 6300 76. 8100 82. 5500 70. 0000

50. 6600 148. 2800 40. 6000 838. 4600

表 2  土壤 重金 属 污 染 程 度 分 级 标 准 及 生 物 毒 性 指 数 (mg
kg
-1

)

Table 2 Standards for grading of the soil heavy metal pollution and the biotoxicity index of heavy metal

污染 因子
Cd Hg Pb Cr Cu Zn

清洁 Ⅰ
0. 1204 0. 092 23. 35 74. 88 28. 37 83. 68

尚清洁 Ⅱ
0. 2523 0. 2592 36. 09 99. 54 40. 63 116. 75

轻污染 Ⅲ
0. 6 0. 45 150 150 120 240

中污染 Ⅳ
1. 4 1. 05 350 350 280 560

重污染 Ⅴ
2 1. 5 500 500 400 800

毒性 指数
2 1 4 5 4 6

采样点
1 2 3 4 5 6 7 8 9 10


0. 3582 0. 2819 0. 3861 0. 7817 0. 0184 0. 2621 0 0. 746 0. 9552 1


0. 4171 0. 5054 0. 6139 0. 2183 0. 4686 0. 4943 0. 0181 0. 2073 0. 0448 0


0. 2246 0. 2127 0 0 0. 3741 0. 2436 0. 0501 0. 0466 0 0


0 0 0 0 0. 1389 0 0. 0981 0 0 0


0 0 0 0 0 0

评价等级 Ⅱ Ⅱ Ⅱ Ⅰ Ⅲ Ⅱ Ⅴ Ⅰ Ⅰ Ⅰ

表 3  采样点各参评因子的权重值
Table 3 The weighing of every assess ment factors in each samp ling position

0. 8336 0 0 0

采样点
1 2 3 4 5 6 7 8 9 10

Cd 0. 3694 0. 2485 0. 1993 0. 1286 0. 4113 0. 3598 0. 7699 0. 0000 0. 1737 0. 2344

Hg 0. 3717 0. 4801 0. 5438 0. 5371 0. 3701 0. 3686 0. 1470 0. 2181 0. 4156 0. 3058

Pb 0. 0378 0. 0415 0. 0452 0. 0392 0. 0362 0. 0318 0. 0097 0. 1516 0. 0641 0. 0681

Cr 0. 0902 0. 0922 0. 0823 0. 1410 0. 0652 0. 0976 0. 0000 0. 2972 0. 1470 0. 1739

Cu 0. 0530 0. 0592 0. 0659 0. 0741 0. 0603 0. 0828 0. 0096 0. 1597 0. 1029 0. 1071

Zn 0. 0777 0. 0785 0. 0635 0. 0801 0. 0568 0. 0594 0. 0637 0. 1733 0. 0968 0. 1107

表 5  8 种方法评价结果比较
Table 5 A ssess ment results among eight methods

评价方法 层次分析法 模糊综合评价法 [ 21 ] 改进层次分析法 [ 25 ] 灰色聚类 [ 26 ] 非线性可拓综合法 [ 27 ] 分级贴近度法 [ 28 ] 物元分析法 [ 29 ] 改进模糊数学法
[8 ]

各采样点评价结果
1 2 3 4 5 6 7 8 9 10

3  结果分析与对比
用改进的模糊综合分析法评判结果同其它七种评 价结果相比 (表 5 ) , 除分级贴近度法外的其它 7 种评 价方法的评价结果在多数情况下是一致的 , 表明该方 法用于土壤重金属污染评价是可行的 。评价结果不一 致的主要有样品 1、 样品 3、 样品 5 和样品 7。其中对于 样品 1,有四种方法的评价结果为 Ⅰ 级污染 , 但由表 1 可以看出 ,样品 1 中 6 个评价因子中有 4 个因子的实 测浓度超过了 Ⅰ 级标准 , 超标率为 67% , 而且毒性最

Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ Ⅲ Ⅰ Ⅱ

Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅲ Ⅱ Ⅱ

Ⅰ Ⅰ Ⅱ Ⅱ Ⅱ Ⅲ Ⅰ Ⅱ

Ⅰ Ⅰ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅰ

Ⅱ Ⅱ Ⅱ Ⅲ Ⅱ Ⅲ Ⅲ Ⅲ

Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅲ Ⅱ Ⅱ

Ⅴ Ⅴ Ⅴ Ⅲ Ⅱ Ⅴ Ⅴ Ⅴ

Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅱ Ⅰ Ⅰ

Ⅰ Ⅰ Ⅰ Ⅰ Ⅱ Ⅰ Ⅰ Ⅰ

Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ

4  结论
1 ) 本文提出的方法改进了模糊综合评价模型中

评价因子权重的计算方法 。它考虑到了各级标准界限 的模糊性 ,继承了模糊数学方法用于土壤重金属评价 的优点 。从定性和定量两方面进行分析 , 比较客观反 映出各污染因子对土壤环境质量的影响 。经过验证 , 模糊综合评价模型是正确的 。

104

土  壤  通  报                       38 卷

2 ) 采用双权重系数法确定各指标的权重 ,综合考

[ J ]. 土壤学报 , 2001, 38 ( 2) : 176 - 183. [ 13 ]  ONKAL 2ENGI N G, DEM I R I, H IZ H. A ssessment of urban air quality using fuzzy synthetic evaluation [ J ]. A tmospheric Environment, 2004, 38: 3809 - 3815. [ 14 ]  WANG H Y . A ssess ment and p rediction of overall environmental quality of Zhuzhou City, Hunan Province, China [ J ]. Journal of Environmental Management, 2002, 66: 329 - 340. [ 15 ]  SHEN G Q , LU Y T, WANG M N , et al . Status and fuzzy comp rehensive assess ment of cmbined heavy metal and organo chlorini pesticide pollution in the Taihu Lake region of China [ J ]. Journal of Environment Management, 2005, 76: 355 - 362. [ 16 ]  F ISHER B. Fuzzy environmental decision - making: app lications to air pollution [ J ]. A tmospheric Environment, 2003, 37: 1865 - 877. [ 17 ]   殷淑华 ,段   虹 . 基于双权重因子的水质评价模糊综合模型 [ J ].

虑了评价因子的浓度和毒性 , 不但在大多数情形下与 对比的其它方法结果相一致 , 而且还能克服其它几种 方法出现的误判 ,使评价结果更全面 、 更能真实地反映 土壤重金属污染的实际状况 , 提高了评价结果的分辨 性。 3 ) 该模型层次清楚 , 物理意义明确 , 适用于土壤 重金属污染的评价 ,也适用于其它环境污染评价 。 参考文献 :
[ 1 ]  M I RELES A , SOLS C, ANDRADE E, et al . Heavy metal accumulation in p lants and soil irrigated with wastewater from mexico city [ J ]. Nuclear Instruments and Methods in Physics Research, 2004, 219 220 ( 6) : 187 - 190. [2]  张乃明 . 土壤 - 植物系统重金属污染研究现状与展望 [ J ]. 环境科

中国农村水利水电 , 2005 ( 8) : 25 - 26.
[ 18 ]   劳期团 . 环境管理实用技术方法 [M ]. 北京 : 中国环境科学出版

社 , 1994: 38 - 51.
[ 19 ]   彭祖赠 ,孙韫玉著 . 模糊 ( Fuzzy) 数学及其应用 [M ]. 武汉 : 武汉

学进展 , 1999, 7 ( 4) : 30 - 33.
[3 ]  唐翔宇 ,朱永官 . 土壤中重金属对人体生物有效性的体外试验评

大学出版社 , 2002. 122 - 131.
[ 20 ]   李洪兴 ,汪培庄 . 模糊数学 [M ]. 北京 : 国防工业出版社 , 1993, 116 - 128 [ 21 ]   彭再德 . 模糊综合评价法在区域土壤环境重金属污染评价中的

估 [ J ]. 环境与健康杂志 , 2004, 21 ( 3) : 183 - 185.
[4]  崔德杰 ,张玉龙 . 土壤重金属污染现状与修复技术研究进展 [ J ].

土壤通报 , 2004, 35 ( 3) : 366 - 370.
[ 5 ]  LEE C S L, L i X D , SH IW Z, et al . Metal contam ination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics[ J ]. Science of the Total Environment, 2006, 356: 45 - 61. [6]  林建伟 ,王里奥 ,赵建夫 , 等 . 三峡库区生活垃圾的重金属污染程

应用 [ J ]. 化工环保 , 1993, 13 ( 4) : 235 - 238.
[ 22 ]   高怀友 ,赵玉杰 , 师容光 , 等 . 区域土壤环境质量评价基准研究 [ J ]. 农业环境科学学报 , 2005, 24 (增刊 ) : 342 - 3451 [ 23 ]   高怀友 ,刘凤枝 ,赵玉杰 . 我国农产品产地环境标准中存在的问

题与对策研究 [ J ]. 生态环境 , 2004, 13 ( 4) : 691 - 6931
[ 24 ]   张文具 ,范华义 . 天津市土壤中 Cd、 Hg、 A s、 Cu、 Zn、 N i环境标准

度评价 [ J ]. 长江流域资源与环境 , 2005, 14 ( 1) : 104 - 108.
[7 ]  石晓翠 ,钱   翌 ,熊建新 ,等 . 模糊数学模型在土壤重金属污染评

制定 [ J ]. 城市环境与城市生态 , 2002, 15 ( 3) : 47 - 48.
[ 25 ]   孟宪林 ,郭   威 . 改进层次分析法在土壤重金属污染评价中的应

价中的应用 [ J ]. 土壤通报 , 2006, 37 ( 2) : 334 - 336.
[8]  李德豪 ,钟华文 . 层次分析模糊决策法评价土壤重金属污染 [ J ].

用 [ J ]. 环境保护科学 , 2001, 27 ( 103) : 34 - 36.
[ 26 ]   王作雷 ,蔡国梁 ,李玉秀 . 土壤重金属污染的非线性可拓综合研

石油化工高等学校学报 , 1997, 10 ( 3) : 51 - 54.
[9]  武  伟 ,唐明华 ,刘洪斌 . 土壤养分的模糊综合评价 [ J ]. 西南农业

究 [ J ]. 土壤 , 2004, 36 ( 2) : 151 - 156.
[ 27 ]   谢贤平 ,赵  玉 . 用改进灰色聚类法综合评价土壤重金属污染 [ J ]. 矿冶 , 1996, 5 ( 3) : 100 - 104. [ 28 ]   张松滨 ,李万海 ,王   红 . 分级贴近度法与环境质量评价 [ J ]. 环

大学学报 , 2002, 22 ( 3) : 270 - 272.
[ 10 ]   朱  青 ,周生路 ,孙兆金 ,等 . 两种模糊数学模型在土壤重金属综

合污染 评 价 中 的 应 用 与 比 较 [ J ]. 环 境 保 护 科 学 , 2004, 30
( 123) : 53 - 57. [ 11 ]   张超兰 ,白厚义 . 用模糊综合评判法评价土壤重金属污染程度 [ J ]. 广西农业生物科学 , 2003, 22 ( 1) : 54 - 57. [ 12 ]   王建国 ,杨林章 ,单艳红 ,等 . 模糊数学在土壤质量评价中的应用

境工程 , 2000, 18 ( 5) : 50 - 52.
[ 29 ]   门宝辉 ,梁   川 . 农业土壤环境综合评价物元模型的建立及其应

用 [ J ]. 水土保持通报 , 2002, 22 ( 4) : 37 - 39.

1 期            窦  磊等 : 针对土壤重金属污染评价的模糊数学模型的改进及应用

105

I m provem en t and Applica tion of a Fuzzy M a thema tica l M odel for A ssessm en t of Heavy M eta l Pollution in So il
DOU Lei
1a, 1b

, ZHOU Yong2zhang

1a, 1b

,WANG Xu 2ri , YANG Zhi2jun
2

1a, 1b

, PENG Xian 2zhi , L I Xiu 2juan
3

3

( 1. Zhongshan U niversity a1D epartm en t of Earth S ciences, b1Center for Earth Environm en t and R esou rces, Guangzhou 510275, Ch ina;

21D alian N a tural H istory M useum , D a lian 116023, Ch ina; 31S ta te Key L abora tory of O rganic Geochem istry, Guangzhou Institu te of Geochem istry, Ch inese A cadem y of Sciences, Guangzhou 510640, Ch ina)

Abstract: The assessment of heavy metal pollution is an im portant issue in the research of heavy m etal pollution in soil . This study i m p roves on the calculating m ethod of fuzzy m athematical model and the weighing of assessment factors, and brings for ward the fuzzy assess ment based on two weighing factors. The method considers w ith discretion the fuzziness on the line of distinction of the every criterion, and succeeds to the advantage of the fuzzy mathematical method used in the assess ment of heavy metal pollution in soil . It m akes a quantitative and qualitative analysis on the objective influence, which the polluting factors engender for the quality of the soil environm ent . In most situations, the result, which educes by using the method of t wo weighing factors to deter m ine the weighing of different indexes and consider synthetically the concentration and toxicity of the assess ment factors, is accordant w ith the results elicited by using other m ethods . And also, this method w ill raise the resolving performance of the assess ment result via overcom ing the error of other methods, and make the result to reflect the actual status of the heavy m etal pollution in soil more comp rehensively and factually . Key words: Soil environment; A ssess m ent of heavy m etal pollution; Double weighing factors; Fuzzy mathem atical model; Fuzzy comp rehensive model


相关文章:
更多相关标签: