当前位置:首页 >> 材料科学 >>

PDMS在NMRI显影剂上之应用(I)流变性质之探讨


??

¤¤

??

¤j

??

¤? ?? ¤u ?{ ?? ¨s ??
?? ¤h ?× ¤?

PDMS ?b NMRI ???v??¤W¤§???? (I)?y?????褧±?°Q

?ü??±?±? ?G?}·s?? ±?±?
?? ¨s ???G?????u

¤¤

?? ?? °ê ¤K ¤Q ¤E ?~ ¤? ¤?

??

¨??~ ?A ??¤C??-?±??] ?A ?b?o¤????u??¤é¤l?? ?A ???X?ü??±?±??}·s ?????v??±x¤?±??? ?A ¤@¨B¨B???¨??-_§§ ?A ¤?????¤U¤F???ê??±M·~??? °ò?? ?A §ó°??i¤F?C¤??i¤? ?B????¤?±???°?¨??A?× ?A ?v???E?? ?A ¨S???? §? ?A?b??-P¤W§???±R°???·q·N ?F §ó?t????·P°????O???v??±?¨|????? ¨??R·P ?B?d??·P¤??v???????M????????¤H?B¨??A?× ?A ?ê¨??°??????¨? ?d ?C ?P?? ?A ??-n·P??¤f???e-????B??±?±? ?B?S???s??¤h??¤??פ????é ???ü??§ó?? ?A ¤?¤¤-ì¤j?????v?à§g?q±?±??ó¨D??????±?-} ?B¤f?????? ?ü±? ?A ¨?±o???פ?§ó?[?R?ê§??? ?A ¨????ó¤¤-ì¤j????¤u???é??¤???? ??¤??ê??????¤W???°?? ?A ??°J¤?·P?? ?C ?t?~ ?A ???????I?ò?ó??¨s??????¤????h?_?Q??·N¨?¤??ê ???b???`?í·P?E ?C ???~ ?A ?????L?v?e ?B§d???a ?B?????i¤????j?????? ???ü???P¨ó§U ?A ?P??§d?ó¨? ?B?P???? ?B?B???{ ?B±???¤d¤?°?¤?¤l???U ?ê???????????P???n¤??ó¨D????????¤?????¤W??·??U ?A ?? §??^§?-è ?B?B?@?ú ?B?\?v?q?ó???????°§U¤??ù ?A ?b??¤@¨??x?? ?C ???á ?A -n·P????·R??¤÷?? ?B¤j?n ?B¤p§?¤??q?q¤??ù§??? Andy?A
?b?????B??¨s???q¤??_?????y¤?¤??ù ?A ¤è?à¨?§??b?L?á?U¤§?~?????? ¤¤?A ??§Q§??¨??·~?C ???H???פ??m????·R§???¤÷???M?a¤H¤????h§????v?? ?B?P???M?B ¤?-??A ?@±N?o?÷??·~???????P??????¤?§???¤H¤?¨? ?C

I -^¤??K-n?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L II ?í??¤??L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L IV ????¤??L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L V ??¤@?? ?ü?×?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 1 1-1 ???v???L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 3 1-2 ???v??¤§?????L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 4 1-3 ?{§??????L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 6 1-4 ??¨s°??÷?P?????L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 9 ??¤G?? ?y????¤??m?^?U?P?z?×-I???L?L?L?L?L?L?L?L?L?L?L?L?L 11 2-1 ?y????¤??m?^?U?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 11 2-2 ?z?×-I???L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 12 ??¤T?? ?ê???L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 18 3-1 ?ê?????~?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 18 3-2 ?ê???????L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 19 3-3 ?ê??¨B?J?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 20 3-3-1 ¨??G¤§?s???L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 20 3-3-2 ???|?q?ú?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 21 3-3-3 ?í-±±i¤O?q?ú?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 22 3-3-4 ?????@?? (NMR)?q?ú?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 22 3-3-5 ?????@?????v (NMRI) ?L?L?L?L?L?L?L?L?L?L?L?L?L?L 22 3-3-6 ?y?????è(Rheology Properties)?q?ú?L?L?L?L?L?L?L?L?L 22 3-4 ?y?{???L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 23 ???|?? ???G?P°Q?× ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 24

Part I ???~?S??¤??R?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 24 4-1 ¤?¤l?q ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 24 4-2 FTIR ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 26 4-3 ?H?× ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 26 4-4 NMR ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 30 4-5 NMRI?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 30 Part II ?y?????è±?°Q ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 37 4-6 Steady-state ¤§?y?????è±?°Q?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 37 4-6-1 ???|¤?§G?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 37 4-6-2 ¨ü????(compressed)¤???¨ü????(uncompressed)¨??G¤§°?¤? ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 43 4-6-3 ?é?n¤??v(?r )???S??±`??(m?BA)¤§?v?T?L?L?L?L?L?L?L 48 4-6-4 Ca (capillary number)¤§???ù?????L?L?L?L?L?L?L?L?L?L 48 4-6-5 ??????¤O (?neff )???y?????褧?v?T?L?L?L?L?L?L?L?L?L 51 4-7 Oscillatory-shear ?y?????褧±?°Q ?L?L?L?L?L?L?L?L?L?L?L?L?L 57 4-7-1 Yielding of the compressed colloid?L?L?L?L?L?L?L?L?L?L 57 4-7-2 Compressed ??¤l¤§?x?s???? (storage modulus)¤?·l?????? (loss modulus) ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 59 4-7-3 Uncompressed ??¤l¤§?x?s???? (storage modulus)¤?·l?????? (loss modulus) ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 62 ??¤-?? ???×?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 69 °???¤??m?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 71

PDMS ¨??G?i??¨?§@?°NMRI ?z-G?D¨t??¤§???v???A???°¤F?קK?Q¤p ?z§l??¤?°ò?ó?r??¤§???q ?A?G??¨s¤¤±??????p??¨??G¨?§J?A¤W-z°? ?D ?C¨??i???? FT-IR ¤??H?פ§§???¨????ú???p¤??????????A ?P??§Q?? NMRI ¤¤?ú??????¤????G?i?? ?A PDMS ???T?i§@?°?z-G?D¨t?????v¤§ ???C?t?~ ?A??¨s¤¤?o?{?A ¨??G¤§?é?n¤??v±??¤¤j?ó???¤¤p?ó?pc ??
?i?F¨ì-??U¤f?A¤è?K??¤? ?A

NMRI ¤§°T??±j?פ§???? ?C

?ê??¤¤?o?{ ?A?b Steady-shear ±??ó¤U ?A ????????§??à???X?n=?n ?P m ?A?B¨??G?O¤@¤??ó¤??y?y?é?P°?????¨??G (highly 0 +Aγ ¤ § ? g ? ? ? ? compressed emulsion)?y?é??¤§?L??°?°ì?C?i¤@¨B?o?{¨??S??±`?? m ?P¤?????¤§???|???¨??¤?¤§???Y ?A¨??i????¤@°??]????????¤O (?n eff= ?n-?n0)?H±o??±?¨??y°?¤¤¤§??¤l??????§???????????¤O?C???~ ?A¤??× ???ì???????p??¨??G?ó?r >≤ρc ??±??p¤U
?A¨??n 0???r 1/3

/2R?C

???b Oscillatory-shear ???A¤U ?A·í?r >≤ρc ??
??????¤@-°????¤O

?A ¤??×?O???ì???????p

(?ny)?A ?B?P?????ny???r

1/3

/2R ¤§???Y???F?????Y??

?°¤G??¤??P???A¤U±o¨ì ?A ?????????P¤§???G ?A ?????G?N?í-°????¤O¤§ ?????O???ó??¤l??¤§§l¤?¤O???y?¨? C ?b?r >≤ρc ?° compressed ???A¤U ?A ¨??y?????°¤§???G?i?H?ny §@?°¤???¤??¨?u??°?¤??H?u??¤G°?
?r ?F ???b

<≤ρc ?° uncompressed ???A¤U?? ?A ¨??x?s???? (storage modulus?FG′)

?M·l??????(loss modules?FG′′)?h???ú????§??? ?A ?B?i¤??°¤T-?°?°ì ?C

Abstract
The rheology properties of the linear PDMS emulsions and the crosslinked PDMS colloidal solutions were investigated. The linear PDMS emulsions have been proposed as a new contrast agent for the gastro-intestinal NMR image. To avoid possibly being absorbed by intestine, this work suggested the crosslinked PDMS colloidal solutions as an alternative to overcome this problem. Moreover, the variations of FT-IR spectra and viscosity were used to proof the hydrosilation reaction really occurred, as well as results of the NMR image revealed that PDMS colloids have potential application to improving contrast of waterselective image. We additionally found that volume fractions near ?r c are better for coordinating comfortable oral administration and the desired intensity of NMR signal prepared emulsions or colloidal solution. Under the steady-shear circumstance, these colloids’ experimental
m data could be modeled by?n=?n0+Aγ . According to this model, we ?P

defined the rheology properties of our samples to be in a transition from a Newtonian fluid to a fluid of the highly concentrated emulsions. For these samples, the characteristic constant m could be related to the diameter (2R) of the disperse phase by the relationship ln (2R)~m. Hypothetically the effective stress (?neff=?n-?n0) was proposed to realize how much the stress was required to initiate a deformation while these colloids were in a flowing field. We found additionally that at compressed condition(?r >≤ρc) both linear PDMS emulsions and crosslinked PDMS colloidal solutions had an empirical relationship?n0???r
1/3

/2R.

As the steady-shear experiment, the samples under the oscillatoryshear conditions both the two kinds of samples (linear PDMS and crosslinked PDMS)also have the similar relationship ?n y???r
1/3

/2R in

which?ny was the yield stress of the oscillatory-shear experiment. We believed that yield stress(?n 0 or?ny) were dominated by the attraction force rather than the rigidity of the dispersion phases where the attraction force was affected by the hydrogen bonding and van der wall force in the samples. Under the compressed circumstances(?r >≤ρc), their oscillatory-shear responses could be categorized into the elastic region and the viscolastic region, which were distinguished by the yield stress. For the uncompressed colloids(?r <≤ρc), the apparent variations of the storage and loss modulus exhibited three distinguishable regions.

List of Tables
Table (1): Approximate In Vivo Tissue T, Values. ?L?L?L?L?L?L?L?L 7 Table (2): Classification of MR Imaging Contrast Agents in Use and Under Development?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 8 Table (3): T1s and T2s of linear PDMS and the crosslinked PDMS?L?L 34 Table (4): Characteristic properties of the linear PDMS colloidal solutions ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 39 Table (5): Characteristic properties of the crosslinked PDMS colloidal solutions?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 40 Table (6): Shear rate of the linear PDMS and crosslinked PDMS ?L?L 53

List of Figures
Fig.1: The energy of the x-ray and NMR. ?L?L?L?L?L?L?L?L?L?L?L?L 2 Fig.2: The structure of the chelate of the contrast agent. ?L?L?L?L?L?L 5 ?D 3s -1, keeping Fig.3: The?r dependence of the droplet radius, a, for ?^=10 the continues phase composition fixed. Inset: The dependence of the droplet radius, a, on the internal phase oil viscosity ηi , fixing ?D 3s -1 , and ?r =0.7. ?L13 the continuous phase composition, ?^=10 Fig.4: A comparison of the yield stress, τy , determined by steady shear (solid symbols) and oscillatory rheology measurements (open symbols) as a function of?r eff for an emulsion with radius a=0.25 ? m. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 15 Fig.5: The ?^ dependence of the storage G' (solid symbols) and loss G"(open symbols) moduli of a monodisperse emulsion with r ≈ 0.53 ? m for?r eff ≈0.8(diamonds), 0.63(triangles), and 0.6(circles), measured at ω =1rad/sec. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 17 Fig.6: Diameters vary with the change of linear PDMS molecular weight. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 25 Fig.7 (a): FT-IR spectra of the linear PDMS, the crosslinker (HMS151) and the mixture of the PDMS and HMS151. ?L?L?L?L?L?L?L 27 Fig.7 (b): FT-IR spectra of the variations of Si-H and C=C bands while catalyst Pt is added. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 28 Fig.8: The viscosity difference between the emulsions and the colloid solutions. (n): 49ppm Pt in the disperse phase ?L?L?L?L?L?L?L?L?L?L?L 29 Fig.9: 1H NMR spectrums of the colloids. ( ): 49ppm Pt in the disperse phase ?L?L?L?L?L?L?L?L?L?L 31

Fig.10 (a): Water-selective image of the pig’s small intestine immersed in water. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 32 Fig.10 (b): Water-selective image of the pig’s small intestine immersed in 31SL72. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 32 Fig.11: Cpmparing the spin-spin relexation curves of the linear and the crosslinked PDMSs. ( Ο ): 49ppm Pt in the disperse phase ?L?L?L?L?L?L?L?L 35 Fig.12: Comparing the effect of the Pt presence on the spin-spin relexation curve of the crosslinked PDMS. (Ο): 20ppm Pt in the disperse phase (?): 33ppm Pt in the disperse phase (?): 41ppm Pt in the disperse phase ( ? ): 49ppm Pt in the disperse phase ?L?L?L?L?L?L?L?L 36 Fig.13: The diameter distributions of linear and crosslinked PDMS colloids: open symbols for number density distribution, solid symbols for volume density distribution, dot lines base on Gauss cumulative Eq.. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 38 Fig.14: Diameters vary with the change of volume. ?L?L?L?L?L?L?L 42 Fig.15 (a)(b): Shear stresses of the linear PDMS emulsions at constant strain rates: solid symbols for experimental data and lines from the estimations by Eq. (2). ?L?L?L?L?L?L?L?L?L?L?L?L?L?L 44 Fig.16 (a)(b): Shear stresses of the linear PDMS emulsions at constant strain rates: solid symbols for experimental data and lines from the estimations by Eq. (2). ?L?L?L?L?L?L?L?L?L?L?L?L?L?L 45 Fig.17: The viscous yield stresses of the compressed colloids depend on the variations of volume fractions and diameters. The inset is plotted with reported data.[37]

(n): linear(?r >0.72) and crosslinked(?r >0.67) DMS25 (l): linear(?r >0.72) and crosslinked(?r >0.67) DMS31 (s): linear(?r =0.77) DMS35 (t ): linear(?r =0.77) DMS41?L?L?L?L?L?L?L?L?L?L?L?L 47 Fig.18 (a)(b): Constants A & m are plotted against volume fraction. Solid symbols: constant m. Open symbols: constant A. ?L?L?L?L?L 49 Fig.19 (a)(b): The diameters of the crosslinked PDMS vary with the different constant m. The inset is for the linear PDMS emulsions. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 52 Fig.20 (a)(b): Variations of effective stress depended on the dispersion phases’ volume fraction and different PDMS disperse. ?L?L?L 54 Fig.21 (a)(b): Variations of effective stresses versus the values of A/2R: symbols for experimental data, lines for regression results. ?L56 Fig.22: Stress is a function of strain under oscillatory measurement at ?s = 1Hz. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 58 Fig.23: The viscous yield stresses of the compressed colloids depend on the variations of volume fractions and diameters. The inset is plotted with reported data.[37] (n): linear(?r >0.72) and crosslinked(?r >0.67) DMS25 (l): linear(?r >0.72) and crosslinked(?r >0.67) DMS31 (s): linear(?r =0.77) DMS35 (t ): linear(?r =0.77) DMS41?L?L?L?L?L?L?L?L?L?L?L?L 60 Fig.24 (a)(b): The storage modules (open symbols) and the loss modules (solid symbols) of the compressed linear PDMS emulsions under oscillatory measurement at ?s = 1Hz. ?L?L?L?L?L?L?L?L?L 61 Fig.25 (a)(b): The storage modules (open symbols) and the loss modules (solid symbols) of the compressed crosslinked PDMS colloidal

solutions under oscillatory. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L 63 Fig.26: Possible situations of the compressed and the uncompressed colloids at stationary and under shear. (a): Uncompressed colloids at stationary: the aggregation groups associated by colloids move randomly as illustrated by arrow bars. (b): Uncompressed colloids under shear: colloids individually move in the direction of external force. (c): Compressed colloids at stationary: colloids are unmovable due to the crowding contact. (d): Compressed colloids under shear: colloids are deformed and driven by external force. ?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L?L 64 Fig.27 (a)(b): The storage modules (open symbols) and the loss modules (solid symbols) of the uncompressed colloids under oscillatory measurement at ?s = 1Hz?L?L?L?L?L?L?L?L?L?L?L?L?L?L 66 Fig.28 (a)(b): The storage modules (open symbols) and the loss modules (solid symbols) of the uncompressed colloids under oscillatory measurement at ?s = 1Hz?L?L?L?L?L?L?L?L?L?L?L?L?L?L 67

?ü?× ???~¨?°ê¤????N???ì??????°?¤?¤l (PDMS)????¤§°ò??¤????A ?i??
??-p?e¤§??¨s?B¤w¨??¨?? [1-8]?F???~?A°ê¤???¨s?÷?c???n·??}?o PDMS ????¤§???~?A ?B??¤@?a?t°??B???g????¤§ ”?D????·s???~ ”-p ?e?A ?b?g????¤??ù¤U??¤??i??·s???~¤§?q?? ?A ???b???N¤è-± ?A ¤????? PDMS ?b????¤W¤§????§@??¨s ?C

?b????¤W?H?v???E?_?f±?¤§¤è? ?k G ?? ?W - ? ? (Ultrasound)?Bx-ray i CT(Computed Tomography) ¤? NMRI ?C°??W-??i?~ ?A x-ray CT ¤? NMRI §?-????q???i?P?é¤?????§@????????¤§°T????¤??A?A?g?q???B?z°T?? ?á??§e?{¤§?v???C¨?¤¤ x-ray ¤§?à?q?b 106~104eV?A??NMRI ????¤§ ?à?q?ù?b 10-7~10-11eV ?p Fig.1?C?N?à?q?[?I??¨??A NMRI ??¤H?é???y ?¨¤§???`-n?·§C?ó x-ray CT?F?N?????[?I??¨? ?A¤@¨?x-ray CT ?L?k?E ?_¤§?f?z±??p (Pathological Condition)?A?o?i?z?L NMRI ?[?H?E?_?A?p ¤??~(Edema)?B?X?? (Hemorrhage)¤??y°????G (Flowing Blood)?C??±q§? ?N?[?I??¨? ?A NMRI ?·¤? x-ray CT -n?????\?h ?A ?]?° NMRI ¨ü?H¤U¤??°????v?T?G??????±K?× (Density of Nuclear Species?A¤@??±????B-ì ¤l )?A T1 ?P?????? (Relaxation Time)?A T2 ?P??????
?A¤????ì??

(Chemical

Shift)?A¤??B°? (Motion)?C?M¨????¨??§??N¤§¤??P ?A?i¤??°?GProton Density Image ?A T1-weighted Image ?A T2-weighted Image ¤? Chemical Shift Image?A¨?¤¤ Chemical Shift Image ?Y?ü±????D¤?¤§??????§e?{¤§?v ???A??¨??¨??§??N?P?t¤T?????P[9-14]?C???e

Fig.1: The energy of the x-ray and NMR.

NMRI ?E?_???A?? 25~35%¨??????v???F???M???\?h???v ?????b?o?i???V?ü°ê FDA ? ? ? X ? ? ? [ ? 12] ? A ? ? ? I ? ? ? ? ? e ? ° ¤ ? ? ? [Gd(DTPA)]-2 ?Q FDA ??-?¤W?? ?C?M???b????¨s??°ì ?A ????¤¤¤????h ?????Z?n?ü????¤§¤??m ?A ?p?b 1997 ?~¤¤?? 15 ?????Z?n?ü????¨s??°ì ¤§?פ?[15-19]?A¨?¤¤?]?A?x?W [20-21]¤?¤j?° [22]¤§???N???Z ?F?t?b 1995~1997 ?~???ü°ê?B?w°ê ?B?k°ê¤?¤é??§???-??h?g?P????¨s??°ì?? ??¤§±M§Q [23-32]?C ??¤W-z?ê???L?? ?A NMRI ???v??¤§??¨s¤???¨????? ?N?ù-? ?A ?B¨???°?·~?o?i¤§??¤O?C??±??? PDMS ¤§?u?I?b?ó ?G (1)¨C ¤@-?????¤? (Repeating Unit)¤?§t?? 6 -??B-ì¤l?F (2)?b????¤§?@???W?v ?P¤????t?? 5ppm?C?]???A¨???¨?°÷¤§?è¤l±K?× (Proton Density)¤? Frequency Difference ?A?i?b Chemical Shift Image ¤¤??¨??v??¤§??¤??? ?G [27]?C????¨s?Y?????? PDMS ¤§?S?è?A??¨s¨??????b NMRI ???v?? ¤W¤§?i?A?? ?A?H???i?ó????¤W¤§??????°ì ?C

1-1 ???v?? ¤@ . ???W±j??
Mn+2?B Fe+3?B Gd+3?A Nitroxides ¤?§t?????¨???q¤l¤§?????? (Melanin) ???÷¤l??¤??X???A¨?????±j¤§??????(Paramagnetics)?A?i?H¤z?Z¤??è ¤l¤§?P???t?v ? A ?H-°§CT1 ?? T2 ? A ???????è??
???b

NMRI ¤§???v??¤W ?A

?פ§???W±j? (Positive ? Enhancer) ? A ? ? ¨ ? ? D - n ? ? ? ? ? T b 1 -weighted image ? C -Y-°§CT1 ?? T2?A?h·|?W?[ ?? T2 ?P???t?v?W?[¤?§?
?A·|??

T1 ?? T2 ?P???t?v

(Relaxation Rate)?F

T1-weighted °T??????¤z?Z?C?]???A?o

¨??????????è?b§C?@?×?? ?A?? T1-weighted image ???W±j???G ?F???b°? ?@?×?? ?A???óT2 ¤§?v?T????¤j?ó T1?A·|??-P T1-weighted image ¤§°T

[12]

¤G. -t?W±j??

?t?~?A??¤??K (Iron Oxide)? M ? ( é Dysprosium, Dy)?Y¤@??±j????
(Ferromagnetic)???è?A¨?·|??????????§???¤z?Z?A¨?????¤§¤?§?¤??? ?W?[ ?A????-P T2 -°§C
?b ? A ????

T1 ¤§?v?T?o??¤p

?F?????u-°§C

T2 ¤§???è

?A

NMRI ???v??¤§????¤W ?A?פ§-t?W±j??(Negative Enhancer)?F¨??D

-n?????b T2-weighted image?C[12]

¤T. ?g?X?é

?]¤W-z¨?????¤§?÷???÷¤l ?A??¤H?é????·í¤j¤§?r?` ?A¨??pGdCl3
??°???¤§?b-P?????q

(LD50)???° 0.3~0.5 ?@???? /¤?¤?[13] ?F?G??-p?]?g

?X?é (Chelate) ? P ¤ W - z ? ÷ ? ? ? ÷ ¤ l § ? ? ¨ ? ù ??X A? ¨é ??p [Gd(DTPA)]-2 (Gadopentetate Dimeglumine)?A¨??b-P?????q(LD50)???@?°10~20 ?@?? ??/¤?¤?[13]?A?M¤@??¨??????q???° 1.0~0.1 ?@???? /¤?¤??C°?¤FDTPA ?~?A?b¤??m¤W°O?ü??·í?h¤§?g?X?é ?A Fig.2 ??¨??|¤@¨??-???Q?}?o¤§ ?g?X?é ?A?H¨?°????pDOTA?B TETA?BBOTA?BEOB-DTPA[14]?C

1-2 ???v??¤§????
NMR °T??¤§±j?×·|¨ü?è¤l±K?× ?BT1 ¤? T2 ?v?T
?F?B?è¤l±K?×·U¤j

C H 2 5 HOOC HOOC N N N COOH
(a) DTPA

COOH COOH HOOC HOOC N N N COOH
(b) EOB-DTPA

COOH COOH

HOOC HOOC

N O

N

N COOH

COOH COOH

HOOC

N N

N N

COOH

HOOC
(c) BOPTA

COOH

(d) DOTA

HOOC H C NC 3 HO

N

N

C N CH 3 N COOH O H COOH OH CH 3 HOOCN N HOOC
TETA

N

COOH

HOOC

N

N

N COOH

COOH N

(a) DTPA-BMA

(b) DTPA-BP

HOOC

N N

N N

HOOC

N N

N N H

COOH

HOOC

HOOC N COOH N COOH

(c) HP-

(d) DO3A

Fig. 2: The structure of the chelate of the contrast agent.

T1 ¤? T2 ·U¤p

?A?h°T??±j?×·U¤j

?F¤?¤§???M

?C??

NMRI ?Y????

¤H?é¤?¤§?U???x (Organ)??¤??P¤§ T1(Table (1))?A¨?¨??b?v??¤W??¤??P ¤§??¤?(Contrast)¤§???G ?A?H¨?????¤§?f?z?E?_ ?C?]???A?°?W?[NMRI ¤§??¤????G?A?b NMRI ¤§???v??(Contrast Agent)??¨s¤¤?A?h??-??ó§? ?? T1 ¤? T2?A?H
???@??-°§C

NMR ¤§°T??±j?× ?C

1-3 ?{§????? ±q Table
(2)? i ? ò ? ??A???v???b?E?_¤W¤§???~?i?° (1)? ? - M ? ~

(Extracellular) (2)??-M¤? (????-M?í-± )(Intracellular of Cell-bound)¤?(3) -G?z(Gastrointestinal)¨t???C¨?¤¤??-M?~¤§???v???D-n?????ó?E?_???? ??¤???¤§???G?y°??A??-M¤? (????-M?í-± )¤§???v???D-n?????ó?~?F?B ?O¤???¤?¨x????¤§???v?C

?????b-G?zNMRI ¤§???W±j???D-n?? (1)[Gd(DTPA)]-2(2)Ferric Ammonium Citrate ¤?(3)Sucrose Polyester ? C ¨???[Gd(DTPA)]-2 ·|?? 62%

??¨ü?E???????v???G?????A???o?? 32%??¨ü?E???????m?{?H ?C Ferric Ammonium Citrate ?i???ó¤f?A?????z?é?` ?A??????¤?¤j?z¤§ NMRI §???§??????G ?F?B¨?¤????Q¤p?z§l?? ?A?G???A?X§@?°-G?z¨t??¤§ NMRI ???v???CSucrose Polyester ?Y?b?×??¤§??°ò¤W?i??à-¤?¤??? (Esterification)?A¨??????b¨?¤??×???Q??¤? ?A¨?§Q???????i???ê?????? ???A?????v????T1-weighted image ??§??i???G?C

Table (1): Approximate In Vivo Tissue T, Values. Tissue T, at 1.7 MHz (ms) 140 150 180 200 200 250 250 300 >360 T, at 3.4 MHz (ms) 150 200 250 230 260 380 390 540 >600

Fat
Liver Muscle Marrow Pancreas Spleen Kidney cortex Kidney medulla Blood

Table (2): Classification of MR Imaging Contrast Agents in Use and Under Development
Enhancement Type Positive enhancing Extracellular Small molecular weight Gadopentetate dimeglumine Gadolinium DOTA meglumine Gadoteridol Gadodiamide injection Nitroxides Macromolecular/ blood pool Albumin-(Gd-DTPA) Dextran-(Gd-DTPA) Polylysine-(Gd-DTPA) Paramagnetic liposomes Contrast Agent Type Intracellular or Cell-bound Hepatocyte-directed Gd-BOPTA Gd-EOB-DTPA Manganese DPDP Iron HBED Fe-EHPG RES-directed Paramagnetic liposomes Tumor-directed Metalloporphyrins Antibody-(Gd-DTPA) Calcification-directed Gd-DTPA diphosphonate Gastrointestinal Water-miscible Gadopentetate dimeglumine Ferric ammonium citrate Water-immiscible Vegetable oils Fats Sucrose polyester

Negative enhancing

Hepatocyte-directed Water-miscible Arabinogalactan USPIO SPIO RES-directed Barium sulfate suspensions SPIO Clays USPIO Water-immiscible MION Gas-producing pellets Superparamagnetic liposomes Perfluorooctylbromide Lymph nodes SPIO USPIO MION Antigen-directed MION-immunoglobulin Note. –BMA = bis-methylamide, BOPTA = benzyloxypropionictetraacetate, DOTA = tetraazacyclododecanetetraacetic acid, DPDP = dipyridoxal diphosphonate, DTPA = diethylenetriaminepentaacetic acid, EHPG = diastereometric N, N’-ethylene-bis (2-hydroxyphenylglycine), EOB = ethoxybenzyl, HBED = N-N’-bis (2-hydroxybenzyl) ethylenediamine-N, N’-diacetic acid, MION = monocrystalline iron oxide nanopolymer, RES = reticuloendothelial system, SPIO = superparamagnetic iron oxide, USPIO = ultrasmall superparamagetic iron oxide.

Small molecular weight Dysprosium DTPA Dy-DTPA-BMA Macromolecular/ blood pool USPIO Albumin-(Dy-DTPA)

NMRI ¤§-t?W±j???D-n??(1)Perfluorooctylbromide ¤? (2) ¤ f ? A ? ? ? ? ? ? ? (Oral ? ¤ l Magnetic Particles, OMP) ?C Perfluorooctylbromide ?Y¤@??¨?¤??G ?A?]¨?¨?????¤p???í-±±i¤O?A?à §??t?q?L-G?z¤§???l?? (Foodstuffs and Stool)?A¨ì?F¤j?z?u?? 30 ¤? ???F??¨????????v?????A?? 26%¨ü?E?_??·|????¤?-G¤????R??¤?¨}¤? ???C??¤f?A????????¤l?D-n?¨?÷?O??¤??K ?A¨?????¤§¤?¨}¤????°¤? -G ?B???R¤????m ?C

1-4 ??¨s°??÷?P???? ¨???¤??m?ê?????? ?A°? 1995 ?~?ü°ê??¤@?g±M§Q?~ [27]?A?A?L¤??m
°O?ü?HPDMS §@?°NMRI ???v??¤§??????¨s ?C???g±M§Q?Y°ò?ó???e ????-G?z¨t??¤§???v???A§???¤@¨?°?§@???p¤?-G ?B???R¤????m¤§±? §??F?B°ò?ó PDMS ??¨?°÷¤§?è¤l±K?פ??P¤?????¨?°÷¤§ Frequency Difference ?A ?G?HPDMS §@?°§÷?? ?C¨???¨s¤è?k?°?G±N???ì??PDMS(?p ???o ?A Silicon Oil)??¨?¨?¤??G ? A ?`¤J????-G?z¨t???á ? A ? H Chemical Shift ¤§?¨??§??N?[??????-G?z?????C??¨s???G???? ?G?`¤J PDMS ?á?A?i ?H?W?[????-G?z?????P¨??L?????b NMRI ¤W¤§??¤????G ?C

?]°???¤§-G?z?????~???\?h?o?× (Lipid)?A¨??D-n¤??????c?° -CH2CH2-?A????¤??????c¤§?è¤l?b NMR ???W?v?P PDMS ?????A?G?b-G?z ????¤?§t PDMS ¨?°t?X Chemical Shift ¤§?¨??§??N ?A?L?×????¤????? ?o??¤§?è¤l§@?°?¨??¨?·??A§??à¨?-G?z?????bNMRI ¤W??

Table (2)¤¤¤§?-???o(Vegetable Oils) ??¤? PDMS §ó?°?A·í?A?]?°?-???o§ó¨????????e?? ?C?ó 1995 ?~¤§¤@ ?g?{§??ê??°O?ü [26]?A±N?á???o??±??`¤J???z(?D¤f?A¤è??)?A?i?H?W ?[???z?b NMRI ¤W¤§??¤????G ?F?????ó¤p?z·|§l???o?×???è ?A¨??-?? ?o¤§????§?--?ó???z ?C?]???A¤W-z±M§Q??¨???¤§???ì?? PDMS[27]?A ??·|??¤p?z§l??¤§???{ ?A ?G????¨s§?±??H???ì??¨ú?N???ì??PDMS?A ?h±N?i?קK¤p?z¤§§l???C ???~ ?A ?°§???¤f?A???k?????A?? ?A ??±NPDMS ?s?¨¨??G???A ?A ¨?§Q??§???¨??G???¨¤§±??ó¤U ?A ±?°Q¨??i???????y?? ???è?A §??X¤@???A±??ó ?A ?H?F¨ì-??U¤f?A¤?NMRI °T??±j?פ§?????C

?y????¤??m?^?U?P?z?×-I??
2-1 ?y????¤??m?^?U ?N¨??G?y?????[?I??¨? ?A ?-?b1980
?~?A Princen ????[34]?N¤w??

?X¨??G???y?????è?????ó°?·~¤W¤§-?-n?? ?A ¨??H model ?w?ú?u?ê???A ¤U¨??G¤§?H?× (viscosity)?B?H?u?? (?x?s?????FG′?Β?λ↓?…?…? ?Φ G″)?B ?? -±??????(surfactant)¤?¨?-°????¤O (yield stress ?F ?n0)?P¤??????é?n¤??v (?r )¤§???????F¨?¤¤?ò±o?n 0∝≤ρ1/3 ¤? G′∝≤ρ1/3 ¤§???Y
?????è·|?H?{???é?n¤??v ?A ¨??o?{¤W-z?U

(?r c)§@¤???????¤??P?{?H ?C???~ ?A ???ó??-±

????????§í¨?¤???????¤l????¤????X¤§§@?? ?A ?G¤]?°??¨s??-??I¤§ ¤@ ?C Princen ¤? Aronson ?????? [35]?h????-±???????ó¨??G¤¤§ê?t¤§¨¤ ??§@??¨s ?A ¨??o?{¨??p?פ??P¤?????¤§±???¨¤?×?????C 1986 ?~ Princen ¤? Kiss ????[36]-P¤O?ó¨??G?H?u???褧??¨s¤¤?o?{ ?A ?x?s???? (G′)°? ¤F?P?é?n¤??v(?r )?????~?A ??·|¨ü??¤l¤§?-§????| (R)?v?T?C ???ó?y?? ??¤§±?°Q¤¤?A ?y°????A¤§?o???L?{ ?A ¤]?°???·??¨s¤§?D?D?C ???ó¤@?? ??¨?????¤??????°°?¤?¤l?y?é ?A ?G·í¨??G?o???y°?±?§??? ?A ?~?[??¤O ??¤j?ó-°????¤O?A????-°????¤O¤§?w?ú???????M?-¤w?Q???X ?A ???ê?? -????? 1988 ?~[37]¤~±o¨ì?????C ?H¤W??-z¤§¨??G¨??é?n¤??v???°?r →1 ¤§±??p¤U?A ??°ò?ó???q¤f?A¤§¤è?K??¤?§]?`??¤§?y°????? ?A ?G°w ???é?n¤??v°?¤@¨t?C¤§??¨s ?F ??¤@¨B???·??????°_?y?????褧?z?×-I ??§@?°?á±?±?°Q¤§°ò?? ?C

2-2 ?z?×-I??

¤@ . Ca (Capillary number)
Mason ¤? Bibette ????[38]?b 1996 ?~???X?ó?T?w?????t?v (strain) ¤U??¤???¨t (monodisperse)¤§¨?¤????°?A ¨?±?°Q?G?w?b?|(R)?P?é?n¤? ?v(?r )¤§?????? ?C??¨s¤¤?o?{ ?A ·í?r >0.5 ???A ?b?|·|?H?é?n¤??v???W ?[??¤U-°?F??·í?r <0.5 ???A ?b?|??§????h???ó?-?w?A ??±??p?i§Q?? Ca(Capillary number)?[?H???ú?C[39-41]

C

a

=

τ (σ

eff

R

)

=

η eff γ& (σ ) R

(1)

¨?¤¤ηeff : ?????H?× γ·: °?¤??v R : ?G?w?b?| σ : ?s?ò???P¤???????¤§??-±±i¤O ¨?¤¤ Ca ?w?q?° ηeff γ·?Pσ /R ¤§¤?-??C ·í?}??(rupturing)?o?????A ??-???

¤j?ó¤@?{??-?(Cac)?C°??] Ca≈Cac≈1?A ?h¤??? (1)???á???|?i?í???¨ R ≈σ /ηeff γ?Χ ??≤ρ& <0.5 ?B?T?w°????t?v¤§???A¤U ?A ηeff ?O?H?s?ò???H?×?°?D
?G???|§???¤?¤j ?F???r ?A

>0.5 ???A ???ó?é?n¤??v?W?[¤§?G ?A ηeff ¤??A??
?A?G

???u?H?s?ò???°?D ?O?y?¨?b?|¤U-°¤§?D?]

?A???????????{¤??????H?פ§?v?T ?C

ηeff ???W?[

(Fig.3)

Fig. 3: The?r dependence of the droplet radius, a, for ?P 3s-1, keeping the continues phase composition ?^=10 fixed. Inset: The dependence of the droplet radius, a, on the internal phase oil viscosity ηi, fixing the ?P continuous phase composition, ?^ =103s-1, and ?r =0.7.[38]

. -°????¤O (yield stress?F?n0) ¤@????¨ì?y?餧?y?????°¤j?h?A¤??é°e?{?H¤§±?°Q ?A ???ó??¨s¤¤ ??¨???¤§¨??G?°°?¤?¤l?y?é ?A ?B?P??-?¨??H?u?? ?A ?W?[¤F?é°e???è¤? ?y°????°±?°Q¤§§x???× ?A ??°ò?ó?ê????????-?-n?? ?A ?G???[?H±?°Q ?F ¨?¤¤?v?T?y°????°?o??¤§???D-n????§Y?°-°????¤O ?C ?????ó°?¤?¤l?y ?餧?y-z?p¤U ?G

&m τ = τ0 + Aγ
¨?¤¤?n : ??¤O ?n0 : -°????¤O & : °?¤??v ?^ A ¤? m : ±`??

(2)

?q±`-°????¤O¤§¨D±o?O?bsteady-shear ???A¤U ?A °???¤§?~?A ¤]?i§Q?? Oscillatory techniques ±o¨ì?F?????G¤w?Q Mason ¤? Bibette ???????ó 1996 ?~???X [42]?A ¨?±o¨ì·í?r <≤ρc ????¤W-z¤G??¤è?k??±o¤§?n
???X ¤? 0 ·|??

(Fig.4)?C???פ?±N·|°w??????¤??ó?á???[???ú ?A ¨?§??X?n 0 ?P?r

R ¤§???????A ???|?P m?BA ¤?¨??P?neff(??????¤O)¤§???Y?C

¤T. ?H?u?? (?x?s?????FG′?Β?λ↓?…?…? ?Φ G″)

????¨s??¨???¤§¨??G?°¤@?H?u???y?é ?A ?]?°??¨??G?ó?y?????° ¤¤?A ±N·|?????X?H?u???è (viscolesticity)?C ?b??±??p¤U ?A ¨???????°?¤?
????(shear modulus)?i???? (3)???[?H?y-z ?G G*(?s )=G'(?s )+iG"(?s ) (3)

Fig. 4: A comparison of the yield stress, τy, determined by steady shear (solid symbols) and oscillatory rheology measurements (open symbols) as a function of?r eff for an emulsion with radius a=0.25 ?m. [42]

: ?W?v G'(?s ) : ?x?s???? (storage modules)?A ?N?í?u?? (elasticity) G"(?s ) : ·l?????? (loss modules)?A ?N?í???? (dissipation) ¤@????¨? ?A ?ó°?°?¤??v?? ?A ???ó?G?w¨ü??¤O???????????y°? ?A ¨? G′ ↑∪±Ν??????≠σ ?Χ ???Η∝?°⊕??″????Υ↑° ?Α ∞???″Γ≡ω?}?λ≥?≡∞≈Ε?° (flocculation)??§??¨¤j???°?X?é(aggregation groups)?A ????¨??G¤§?H?u ???è???v??¤W¤? ?A ¨??o?{?r >≤ρc ?? G″↑∪?|?≥??≥???↑∪∞Ξ″{ ?Φ ??°⊕?? ″????π→? ?Α G′?|???????ω↑∪ ?Α ?≠→??⊕″Γ?≠∞?⊕?″{∞Ξ…υ?? (elasticity)?A ?B????¤§?à?q·|?b?G?w????-±?x?s?C ?????G?i?? Weitz ???????????X ¤§¤??m¤¤±o?? [43](Fig.5)?C¤??m¤¤¤j?h°w?? compressed ???A¤U°?±? °Q ?A ?????ó uncompressed ???A?X?G??¤???¤? ?A ??¤?°?¤F compressed °?±?°Q?~ ?A ¤]±N?? uncompressed §@¤??R ?C

??¨s¤¤±N?H¤W-z?U?z?ק@?°°ò?? ?A ???ù±?°Q?y?????°¤¤?U???]?? ??¤§??¤????Y?A ¨?§??X¤@???A·í¤§???¨±??ó ?A ?H§Q????¤W¤§???? ?C

Fig. 5: The ?^ dependence of the storage G' (solid symbols) and loss G"(open symbols) moduli of a monodisperse emulsion with r ≈ 0.53 ?m for ?r eff ≈0.8(diamonds), 0.63(triangles), and 0.6(circles), measured at ω=1rad/sec. [43]

?ê??
3-1 ?ê?????~
1. Vinyl-terminated polydimethylsiloxane (DMS-25) , Gelest, Germany, Mw=17000 2. Vinyl-terminated polydimethylsiloxane (DMS-31), Gelest, Germany, Mw=28000 3. Vinyl-terminated polydimethylsiloxane (DMS-35), Gelest, Germany, Mw=50000 4. Vinyl-terminated polydimethylsiloxane (DMS-41), Gelest, Germany, Mw=62500 5. Methyl hydrosiloxane-dimethylsiloxane block coplymer (HMS-151), Gelest, Germany 6. Mixture of platinum-divinyl tetramethyl disiloxane complex and vinyl terminated polydimethylsiloxane (PC075), Huls, America, U.S.A 7. Polyoxyethylene sorbitan monooleate (Tweem-80), Fisher Scientific, U.S.A 8. Deuterium Dxide (D2O), CIL, U.S.A

3-2 ?ê??????
1. §??è?÷(Homogenizer)?GUltra Turrax T25, Germany. 2. ???|¤??R?? (Lighter Scattering Instrument)?G Galai cis-1 3. ?y????(Rotation Rheometer)?G Rheo Stress RS100, HAAHE Co, Germany. 4. ?????@???? (Nuclear Magnetic Resonance)?G Bruker DRX-200 5. ?????@?????v?? (Nuclear Magnetic Resonance Images)?G Bruker Biospec 47/40 6. ?????-?à?????~?ú????(Fourier transform infrared spectrometer)?G Perkin-Elmer Co. 7. ?í-±±i¤O??( Surface Tensionmat)?G Fisher Model 21, U.S.A 8. ?q¤l¤??- (Electric Balance)?G Precisa 205A

3-3 ?ê??¨B?J ????¨s??¨???¤§ PDMS
?????ì??(linear)¤????p??(crosslinked)¤G ? ? ¤ ? ? P ¤ § ¤ ? ¤ l ? ? ? c ¤ ? ¤ ? ? P ¤ § ¤(M ?¤ l?q ?A w=19000(DMS25) 28000(DMS31) ?A 50000(DMS35)¤? 62500(DMS41)) ?A -Y?°???ì??¨??G ?A ?B¨??é?n¤??v?° xx?A ¤?¤l?q?° 28000(DMS31)?????° 31EMxx?F-Y?° ???p???A ?????° 31SLxx?A ?p?G¤?¤l?q?° 28000?A ???ì??¨??G?é?n¤??v ?° 0.81 ?h?????° 31EM81?C

3-3-1 ¨??G¤§?s?? ¤@ . ???ì??¨??G ?H??-±?????? Tween80 20wt%¤?·??G§@?°?s?ò?? ?A ?A?H?U??¤??P
¤?¤l?q¤§???ì?? (Linear)PDMS §@?°¤?????¨??P?s?ò???V?X ?A §Q??§? ?è?÷?ó 0?J?A 8000rpm ¤U¨?¤§§?¤?¤????F¨?¤¤???~??¤?§O§???¤????? ?P?s?ò??¤§-??q¤? 80/20?A 75/25?A 70/30?A 65/35 ¤? 60/40 ¤U???s±o?A ??¤?????¤§?é?n¤??v?h?? (4)??±o¨ì?G
(Md D ) Vd d = V M Mc d d ( V) ( Dd ) + ( Dc ) c

(4)

¨?¤¤ Vd ¤? Vc ¤?§O?°¤?????¤??s?ò??¤§?é?n Md ¤? Mc ¤?§O?°¤?????¤??s?ò??¤§-??q¤??v Dd ¤? Dc ¤?§O?°¤?????¤??s?ò???°¤?-? Dd=0.93?A Dc=1.023 ¤G. ???p??¨??G

[44]?G (1). Peroxide-induced free radial reaction (2) Condensation reactions (3) hydrosilylation addition reaction (4) hydridosilane/silanol reaction?C???? ¨s??±??? (3)hydrosilylation addition reaction ?i?????p¤??? ?A ?] peroxide-induced free radial reaction ???ó??°?·?¤U¤????A Condensation reactions ¤? hydridosilane/silanol reaction ??????¤§°??????i?à·|???V ???~?F?? hydrosilylation addition reaction ¤???¨???¤è?K?? ?A ?b??·?¤U §Y?i¤????A ?B¨???¤§??¤??? Pt ?°¤@?????????è ?A ?i?W?[ NMR °T?? ¤§?P???t?v (Relexation Rate)?A ?G??¨s¤¤±??? hydrosilylation addition reaction ¨??i?????p¤??? ?C ??¤????° silicon hydrogen ( SiH ) bond ¤?¤????MVinyl group( C=C) ??¤§?[?¨¤??? ?A ¨?¤??????p¤U ?G CH3 ?O?Si?CH=CH2 CH3 (PDMS) O + ?O?Si?H CH3 (HMS151)
Pt (PC075) 250 C

O

CH3

?O?Si?CH2CH2?Si?O? CH3 CH3 (crosslinked PDMS)

?Α ???? HMS151 ¤§?@?×?°2.5wt?H ?A Pt ¤§?@?×?°20ppm?C ±N?s±o¤§?U ??¤??P¤?¤l?q???p?? (Crosslinked)PDMS ?P?s?ò???V?X ?A §Q??§??è?÷ ?ó 0?J ?A 8000rpm ¤U¨?¤§§?¤?¤????F¨?¤¤???~?P????¤?§O§???¤????? ?P?s?ò??¤§-??q¤? 80/20?A 75/25?A 70/30?A 65/35 ¤? 60/40 ?s±o ?C

3-3-2 ???|?q?ú ±N???~?[¤J?]?H¤??}?? ?A ¨?¨ú·??G 7ml?A ?g?W-??i·??g¨???¤l§?
¤?¤????A ?HGalai cis-1 ¤§???|¤??R???ú?q???|¤j¤p ?C

3-3-3 ?í-±±i¤O?q?ú ??±N Tween80 20wt%¤?·??G7ml ??¤J cell ¤¤?A ?A±NPDMS 10ml
?w?C?`¤J?A ?R?m30 ?í?F?-?w?á ?A ??¤J???÷ -?v???q?ú ?C

3-3-4 ?????@?? (NMR)?q?ú ±N¨??G?[¤J D2O ??·??G?V?M§?¤? ?A ¨??i???q?ú ?C 3-3-5 ?????@?????v (NMRI) ¤?§O±N¨??G 31SL72 ¤?¤??`¤J??¤p?z¤¤ ?A ¨??i???q?ú ?C 3-3-6 ?y?????è (Rheology Properties) ?q?ú ¤@ . ?H?×?q?ú ???ê???q?ú???~?H?×?O?H Double cone/plate ?H?×-p (Rheo. Stress
Rs100)?ó Steady state ¤U?ú?w°?¤??v (Shear rate)?P???~?H?פ§???Y ?A ?? ??¤§ cone ?° 40 ¨¤¤§ Double cone?A ??§@±??ó?°250C ¤U?ú?q°?¤??v 1
?C

sec -1~500sec -1 ¤§?H?×??¤?-?

¤G

. ?H?u???q?ú ???ê???q?ú???~?H?פ§¤è??¤D?O§Q?? oscillate ¤§-ì?z?A ?[??¤@?g

??????¤?¤§??¤O?ó???~¤W ?C ??§@±??ó?°250C ¤U§Q???T?w?W?v (ω =1Hz) ?ú¨?°???¤O?P?????v¤§???Y ?A §ó?i¤@¨B¨D±o?H?u???è ?A ¨?°???¤O?]?w ±??ó?° 0.01Pa~50Pa?C

3-4 ?y?{??
Tween 80 20wt%¤?·??G + Linear or Crosslinked PDMS

Rheology

Characters of Sample

Steady-shear

Oscillatory-shear

Particle size

FT-IR

NMRI

NMR

???G?P°Q?×
Part I ???~?S??¤??R ???פ??Y§Q?? PDMS(polydimethylsiloxane)¨??G§@?° NMRI ???v
??¤§??????¨s?A ?]?°§@?°¤f?A????¤§NMRI ???v???A ?????q¤f?A??¤§ ???A?? ?B?y?v??¤§ NMR °T??±j?פ?¨??b?y?v?ᤧ??¤????G ?F???H?b ????¤??????????~§@?S??¤??R ?A ?H???ú PDMS ¨??G¨???§@?°NMRI ???v??¤§??¤O ?C ?H¤U±N°w?????~¤§¤?¤l?q ?B FTIR?B?H?× ?B NMR?B NMRI ???v¤@±?°Q ?C

4-1 ¤?¤l?q ????¨s¤¤??¨?????¨??G?°¤@???ó?z-G?D¤W¤§ NMRI ???v???A ?]?°
?F¨ì?s§@¤§¤è?K¤????????O?s¤§???? ?A ?G?? PDMS ¤?¤l?q?v?T¨??G ¤§?S??°?¤@±?°Q ?C -Y¤?¤l?q¤?°? ?A ?h·|???H?פ?°???-P¨?¤?¤???¤§§x ???F-Y¤?¤l?q¤?§C?A ?h·|???H?פ?§C?????y?¨??¤??÷?B???Q¤p?z§l?? ¤§???{?C ?]?? ?A ¤?¤l?q??¨??G¤§?S???v?T?A ?Y?°¤é?á?s????¤@?????? ?v??¤§-?-n°??? ?C ?b Fig.6 ¤¤?|??¤??P¤?¤l?q¤§???ì?? (linear)PDMS?A ?b???P±??ó¤U?i??¨?¤??A ¤?¤l?q??§C??¨????|???t¤?¤j ?A ??¤?¤l?q??

¤j?? ?A ¨????|·|?H¤?¤l?q?W?[???W?[ ?A ??¤@???G?P¤??m°O?ü???? [38] ?p Fig.3 ?C ?]?°·í¤?¤l?q¤j?ó 28000 ?? ?A ?????s???é?n¤??v¤j?ó 0.72(?r

>0.72)¤§¨??G ?A ?B·í¤?¤l?q¤p?ó 17000 ???A ?b????¨s¤§¨?¤?¤è?k¤¤?? ????¤??÷¤§?{?H?o???F?G±???¤?¤l?q?° 17000 ?P 28000 ¤§ PDMS(¨? ?N??¤?§O?°DMS25 ¤? DMS31)§@??¨s ?C

20

18

DMS41

diameter , ?m

16
DMS25

DMS31

14
DMS35

10000

20000

30000

40000

50000

60000

70000

Mw

Fig.6: Diameters vary with the change of linear PDMS molecular weight.

4-2 FTIR ???ó?H???ì??¨??G§@?° NMRI ?b?z-G?D¤§???v?? ?A ·|??¤p?z§l??
¨??G¤§???{?A ?G?S§O?s§@???p??¨??G§@?°???v??¤§?? ?A ¨????? IR ?? ???[?H???????s??¤§¨??G?i?z?L hydrosilyation ?b±`·?¤¤?i?????p¤? ???A ?H§??¨???p??¤§ PDMS ¨??G ?CFig.7(a)¤¤?????A ¤A?m??°ò¤§???ì ?? PDMS ?b 1595 cm-1 ?B??¤@?ú?? C=C stretching band §l?? ?A ?????p

?? HMS151 ?b 2157 cm-1 ??¤@ Si-H stretching band §l?? ?C ???b Fig.7(b) ¤¤?ü?X ?A ·í??¤????` (Pt)?[¤J?á ?A Si-H ¤? C=C §l???p?b±`·?¤U§????? ??¤§±?§??A ???????ú?b Pt ????¤?¤U?A Si-H ?P C=C ?i?b±`·?±??ó¤U?i ?? hydrosilylation¤??? ?A ¨? PDMS ¨??G?b±`·?¤¤???????p¤????C ???~?A Pt ?????????è(paramagnetic)?i?H-°§C¨??G¤§T1 ?P??????
?H?W?i ?A ???S???i

T1-weight Image ¤§??¤????G ?C

4-3 ?H?× °?FTIR ¤§?~?A ???p¤???¤§????¤]?i?????H?פ§§???±o¨ì?L?? ?C
?]???ì?? PDMS ?b¨??G¤¤?Y?H?G?w (droplet) ???A?s?b?A ?~¤O-n¨?¨? ??§??H?F?y°?¤§???????°?e???F??¤??? ?A ???p?? PDMS ?Y?H?ó???A (rubber-like)¤§?T?é???A?s?b¨??G¤¤ ?A ?]?T?é????(modulus)¤§?v?T?A ?G?~¤O-n¨?¨???§??H?F?y°?¤§?????h???°§x?? ?C ?]???A ?b??°? PDMS §t?q¤§¨??G¤¤?A ?B???PPDMS ?é?n¤??v±??ó¤U?A ???p?? PDMS ¨??G ¤§?H?×·|¤j?ó???ì?? PDMS ¨??G¤§?H?× ?C ?b Fig.8 ¤¤???p??¤????ì?? PDMS ¤§?é?n¤??v§??° 0.72(?r =0.72) ?A ?????????????p?? PDMS ¨??G ¤§?H?×?¤¤j?ó???ì??¨??G?C???ê?????G?i?H????§t Pt ¤????p??¤§¨? ?G ?A ?g±`·??x???á?T?????p¤???¤§???? ?A ?H-P¨??H?×·|??°??C

intensity

Si-H 2157 cm-1

C=C 1595 cm-1

PDMS HMS151 PDMS&HMS151
3500 3000 2500 2000 1500 1000 500

cm-1
Fig.7 (a): FT-IR spectra of the linear PDMS, the crosslinker (HMS151) and the mixture of the PDMS and HMS151.

t=0 t=50min

intensity

Si-H 2157 cm-1 C=C 1595 cm-1

3500

3000

2500

2000

1500

1000

500

cm-1
Fig.7 (b): FT-IR spectra of the variations of Si-H and C=C bands while catalyst Pt is added.

31SL72 31EM72

viscosity, Paxsec

1

1

10

100

1000

shear rate, 1/sec

Fig.8: The viscosity difference between the emulsions and the colloid solutions.

(n): 49ppm Pt in the disperse phase

Fig.8 ¤¤¨???¤§?H?×???H?????t?v(strain rate)¤§?W?[??-° §C?A ?G¨???¤§?y?é???è§??i???°¤@shear-thinning ?y?é?C ?]¨??G¤§?y ?????è?°¤f?A???A·P¤§-?-n?]?? ?A ?M?v?T¨??G?y?????褧?]???o?? ?h(?p¤?-±???????????B?é?n¤??v¤????|¤j¤p … ? ? ? ?)?F?G?°?W?i PDMS ¨??G?b?z-G?D NMRI ???v??¤§?????? ?A ?b Part II¤¤??¤?·|?? ¨??y?????è§@?`¤J±?°Q ?A ?b?????H?H?×??¤?????FTIR ¤§?ê?????G?C

4-4 NMR ¤@????¨? ?A °?¤?¤l?A¤??????ó???v??¤§??¨s??°ì ?A???H PDMS
?????ó????°ì¤§?u?I?p¤U ?G (1)?] PDMS ?b¨C-?-?????¤?¤¤§t?? 6 -? proton?A ?Y¤@?? proton-rich §÷???A ?i?b?y?v¤¤??¨??×?I?? proton §t?q (2)PDMS ?b NMR ????¤¤?P¤????j?? 5ppm?A ?i¨? water-selective ¤? PDMS-selective ¤§?y?v????(3)PDMS ?-¤w?????ó?z-G?D??¤?¤?¨}?? ¤§?????A ¨???¤??ù¤§???????e?? ?C?b Fig.9 ¤¤?°?r =0.72 ???ì??¤??? ?p?? PDMS ¨??G¤§NMR ?????A ?b??????¤¤ PDMS ¤§??°ò?S???p?ì ?ó 0.11ppm?A ?B¨?¨?????±j°T??¤§?{?H¨??H???ú PDMS ?Y?°¤@?? proton-rich ¤§§÷???A ??¤?¤§?S???p?h?ì?ó 4.82ppm?A ?????G?i?H???? PDMS ?P¤?¤§????¨?°÷?e¤§ chemical shift ?A ?i¨? chemical-shift ?y?v?C ???~?A Tween 80 ¤§ ethyl group ¤? ethyl oxide group ¤§?S???p?h¤?§O ?ì?ó 1.35ppm ¤? 3.75ppm ?C

4-5 NMRI ???v¤§???G?i?? water-selective §??N?y?v?ᤧFig.10 ???X ?C ¨?¤¤
?G°é???°?z????-M ?A Fig.10(a)??¨???¤§???v???°¤??A Fig.10(b)?h

Intensity

5

HO

2

4

3 2 Chemical shift, ppm
( ): 49ppm Pt in the disperse phase

1

PDMS 0

31EM72 31SL72

-1

Fig.9: 1H NMR spectrums of the colloids.

Fig.10 (a): Water-selective image of the pig’s small intestine immersed in water.

Fig.10 (b): Water-selective image of the pig’s small intestine immersed in 31SL72.

31SL72?A ??¤G??¤§¤????i???X?A Fig.10(b)¤§??¤????G ???ú?? ?A ?GPDMS ???T?°¤@¨???°?·~??¤O¨??B?i?????ó water-selective ???v¤§???v???C°?¤F water-selective ???v§??N¤§?~ ?A?P??¤]?i±??? PDMS-selective ¤§???v§??N ?A ?????ó?????v¤è??·|¨ü PDMS ¤§ T1?B T2 ?P???????v?T ???v¤§°??? ?C
?A?G?H¤U§@?i¤@¨B±?°Q ?A§@?°¤é?á¨???

PDMS-selective

T1 ¤? T2 ¤?§O?N?í

PDMS ¤§?a?V¤????V?P?????? ?A ???° PDMS-

selective ???v¤§-?-n°????A ¨?·|¨ü¨ì???p??¤????p?á°?¤?¤l¤§?B°??? ?°?v?T?C ???ó??¤??? Pt ?°¤@?????????è ?A ¨?§t?q?h?è?i?à·|¤z?Z¤? ?è¤l¤§?P???t?v ?A ?i???v?T T1?B T2 ?P?? T1
?P??·|?H ?A?????G?i??

Table(3)¤¤±o???C

Pt ???K?[??-°§C ?A?o?O???ó¨???¤@?~?[?? dipolar
?A ¨?¤?·|¨ü§t?q¤§?v?T ?A ?p ?A ?????p?á

relexation ??-P?F???? T2 ?P????¨?
¤?¤l¤§?B°????°¤~?O?y?¨

T2 §???¤§?]??

Table(3)?????C ???ì??¨?
?P??¤§

?G?g??Eq.(5)(G(t)=M(t)/M(0)=exp[-(t/T 2)])-×???á?o?{ ?AT2 R2>0.99?A ???????ì?? PDMS ¤§ T2 ?O?P T2 ¤]???H

Eq.(5)?????C???~?A ???p??¤§

Eq.(5)-×??±o¨ì ?A ???? Fig.11 ¤¤±o???A Eq.(5)?P???p?? PDMS

¨??L¤@-P?? ?F??-Y?HEq.(6)(G(t)=M(t)/M(0)=exp[-(t/T 2)0.5])¨?-×???h?i ±o¨ì¤@?????X¤§???? (Fig.12)?A ±?¨s¨?-ì?]?°???p?á¤?¤l¤§?B°????° §?????-P?F???? Eq.(6)¤§±????A ???ê????±N?ó?t?~?פ?¤¤???? ?C ?]?? ¤??D-n?b±?°Q¨??G¤§?y?????è ?A ?G???? Pt §t?q?h?è?? T1 ¤§?v?T¤?¤?
¤l?B°????°??

T2 ¤§?v?T¤??b??¤?¤§°Q?×?d?ò¤?

?C

?H¤U±N?ó?T?w??¤???

Pt §t?q?° 20ppm ¤U ?A °w?????ì??¤????p??

PDMS ¤§?y?????è§@±?°Q ?C

Table (3): T1s and T2s of linear PDMS and the crosslinked PDMS Pt in the disperse phase (ppm) 31EM72 00 T1 (ms)& R2 T2 (ms)# R2 1610 >0.999 194 0.998 20 1172 >0.999 186 0.998 41 1182 >0.999 190 0.998 82 1384 >0.999 186 0.997

Pt in the disperse phase (ppm) 31SL72 20 T1 (ms)& R2 T2 (ms)* R2 1197 >0.999 39 >0.999 33 1259 >0.999 38 >0.999 41 1248 >0.999 39 >0.999 49 1275 >0.999 41 >0.999

#: from eq (5) ? G (t)=M(t)/M(0)=exp[-(t/T 2)] *: from eq (6) ?G (t)=M(t)/M(0)=exp[-(t/T 2)0.5] &: from eq?M (t)=M0+[M(0)-M0]exp[-(t/T 1)]

105

31EM72 31SL72 from eq (5) from eq (6)

M(t)
104 103 0 200 400 time, ms 600 800

Fig.11: Cpmparing the spin-spin relexation curves of the linear and the crosslinked PDMSs. Time < 500 (ms), R2>0.99

2.0

31EM72 31SL72

1.5

31SL72 31SL72 31SL72 eq (5) other lines: eq (6)

M(t)x10 -5

1.0

0.5

0.0 10 100 time, ms 1000

Fig.12: Comparing the effect of the Pt presence on the spinspin relexation curve of the crosslinked PDMS.

(Ο): 20ppm Pt in the disperse phase (?): 33ppm Pt in the disperse phase (?): 41ppm Pt in the disperse phase (?): 49ppm Pt in the disperse phase

Part II ?y?????è±?°Q
4-6 Steady-state ¤§?y?????è±?°Q
4-6-1 ???|¤?§G ???ó?y?????è?i?à·|¨ü?-§????|¤§?v?T ?A ?B?°?A·í?a?y-z¨??G¤§ ?y?????è ?A ?G???w?q??????¤§???| ?C ???ó?h¤???¨t (polydisperse)??¤l
??¨??A ??¤T??¤è?K???w?q¨?°O-z¨??-§????|?G

DN = ∑ Fi Di (for number diameter) DS = DV =

(7) (8) (9)

(∑ F D )
i i

1 2 2 1 3 3

(for surface diameter ) (for volume diameter)

(∑ F D )
i i

¨?¤¤ Fi ?O???|?°Di ¤§¤??v?A °?¤F??¤???¨t??¤l?H?~ ?A¨??-§???

?|¤§???Y???°DN < DS < DV?Χ ?β?≠??…{??∞∈ number density ¤? volume
density ¨??y-z?A¨??i???? Eqs(7)(9)±o¨??-§????| ?C-Y?H number density ¤?§G¨??? (Fig.13)?A ¨??-§????|?° 0.9??1.5?gm?A ?B?P?é?n¤? ?v?L???C ???M???|??¤p¤§???????h?A ???????????é?n?o??¤??A ??¤? ?a-Y?Hvolume density ¤?§G¨??? ?A ¨??-§????|¤§??¤l??¤F¤j??¤????é ?n?A ¨?·|?v?T?á-z¤§?y?????° ?A ?G?b??§Q??volume density ¤?§G¨??y -z¤?????¤§?-§????| ?A ¨??? Fig.13 ¤? Table(4)¤?(5)¤¤?i???X¨????| ¤j?ù?b 10??27?gm?C???~?A ¨??o?{???|???H?é?n¤??v?W?[??¤U-°?? ?????C

?b 2-2 ?`?z?×-I??¤¤???L?ó??¤???¨t??¤¤ ?A ?é?n¤??v?O?P???|?? ???A ?B·|?H?é?n¤??v?W?[??¤U-° ?A ?o?O???ó?s?ò???H?×???y?¨?C

100 80

31EM62 31EM77 31SL62 31SL77

accumulation, %

60 40 20 0 0.1 1 diameter, ?m 10 100

Fig.13: The diameter distributions of linear and crosslinked PDMS colloids: open symbols for number density distribution, solid symbols for volume density distribution, dot lines base on Gauss cumulative Eq..

Table (4): Characteristic properties of the linear PDMS colloidal solutions samples mass ratio of volume mean diameter constant PDMS, % fraction of of dispersion A PDMS, % phase, ?gm 60 62 20.29 0.57 65 70 75 80 60 65 70 75 80 70 75 70 75 67 72 77 81 62 67 72 77 81 72 77 72 77 18.20 15.76 14.12 10.2 26.4 24.7 18.5 13.8 10.5 24.94 14.9 28.40 19.24 0.73 1.41 2.76 6.96 0.38 0.49 0.73 2.34 5.27 0.50 2.1 0.48 1.57 Constant m 0.75 0.7 0.65 0.62 0.55 0.80 0.79 0.77 0.65 0.58 0.89 0.75 0.91 0.79 yield stress (?n0), Pa 0 0 0 5.07 17.9 0 0 0 5.5 13.8 0 3.31 0 1.20 0.3 1.5 4 10 3.45 12 Yield stress (?ny ), Pa effective stress (?neff6), Pa 0.043 0.066 0.152 0.330 1.028 0.017 0.023 0.037 0.189 0.559

25EM62 25EM67 25EM72 25EM77 25EM81 31EM62 31EM67 31EM72 31EM77 31EM81 35EM72 35EM77 41EM72 41EM77

Table (5): Characteristic properties of the crosslinked PDMS colloidal solutions samples mass ratio of volume mean diameter constant PDMS, % fraction of of dispersion A PDMS, % phase, ?gm 60 65 70 75 60 65 70 75 62 67 72 77 62 67 72 77 19.51 16.41 16.13 10.6 26.9 21.5 17.2 9.9 0.27 0.75 1.99 4.12 0.20 0.57 2.24 10.5 Constant m 0.91 0.84 0.78 0.67 0.95 0.88 0.77 0.62 yield stress (?n0), Pa 0 0 4.9 7.98 0 0 1.7 17.2 0.15 11 1.26 8.74 yield stress (?ny), Pa effective stress (?neff6), Pa 0.029 0.095 0.293 0.794 0.012 0.042 0.229 1.676

25SL62 25SL67 25SL72 25SL77 31SL62 31SL67 31SL72 31SL77

Fig.14 ?????A ·í?r ≤ 0.67 ???A ???|¤§§??????ó?-?w?F???r >0.67 ???A ???|¤]·|?H?é?n¤??v?W?[??-°§C¤§?{?H?A ??¤@???G?P¤??m°O?ü?? ??[38]?p Fig.3?F?t?~ ?A ???p?????|?????ì???¤¤p¤§-ì?] ?A ?O???ó?b¨? ¤????]°?°?¤?¤O??????¤§??·?¤??o???p¤???????-P ?A ?????{?H?b PDMS §t?q?V°??V???ú???C

50 linear DMS31 crosslinked DMS31

diameter, ?m
10

5 0.60

0.65

0.70

0.75

0.80

0.85

volume fraction of PDMS

Fig.14: Diameters vary with the change of volume. fractions.

4-6-2 ¨ü????(compressed)¤???¨ü???? (uncompressed)¨??G¤§ °?¤? ?b¤??m°O?ü¤¤ ?A ¨??G (emulsions)¤§?w?q?°?b¤G??¨t??¤¤?A ¤?????
(disperse phase)?P?s?ò?? (continuous phase)§??°?G?é ?A?????é·??G (colloid solution)¤§?w?q?°?b¤G??¨t??¤¤ ?A ¤??????Y?H?T?é???A¤????b ?G?é?s?ò??¤¤?C ?b????¨s¤§¨t??¤¤ ?A ???ì?? PDMS ¨??G¤G??§??°?G ?餧¨??G ?A ?????p?? PDMS ?o?H?T?é???A¤????b¤????s?ò??¤¤?A ?° ±?-z¤è?K ?A ???s??¤§???ì?? PDMS ?????p?? PDMS ????§??H¨??G?? ¤§?C???L?×?O???ì???????p??¨??G ?A §?-??o?{?b¤??P PDMS ?é?n¤? ?v±??ó¤U ?A ¨? steady-shear ?y?????褤§???¨ü???? (compressed)¤???¨ü ????(uncompressed)¤§?{?H ?C ?H¤U±N°w?? steady-shear ?y?????褧?q?ú ???G§@?`¤J±?°Q ?C ????¨s?H steady-shear ?y?????褧?g????¨?±?°Q???y?é???S???A ?g?????p¤U?G

τ = τ 0 + A γ& m

(2)

Fig.15(a)(b)¤?§O?°???ì??¤????p??¨??G¨?°?¤?¤O???????t?v¤§§@ ???A ????¤¤?????A ????¤§?ê?????????i?H Eq.(2)??¨??y-z?A ?B?i?H?r
c -?§@?°¤???¨??? ?F ??¤@???°?r

>?r c?A ¨??n

0??

0(??§@ compressed)?A ??

¤G???°?r<≤ρc?A ¨??n

0

=0(??§@uncompressed)?A ?i¤@¨B????¤¤?i???A ¤G

??¤§?r c ¤? yield stress ????¤??P?A ???ì??¤§?r c(0.72<?r c<0.77)?????p ??(0.67<?r c<0.72)?°°??A ?????p??¤§-°????¤O(yield stress)?o?????ì?? ¨?±o¤j ?F-Y§?±?¤?¤l?q??¤p¤§¨??G(DMS25)??±o¤§???G ?A ¤]?????P¤§ ?????p Fig.16 ?????C???ó¤??P??¤?¤l?q¨??y?????°?????ü ?A

100

shear stress, Pa

10

1

31EM62 31EM67 31EM72 31EM77 31EM81

0.1 10 0 10 1 10 2 10 3

strain rate , 1/s

Fig.15 (a): Shear stresses of the linear PDMS emulsions at constant strain rates: solid symbols for experimental data and lines from the estimations by Eq. (2).

10 2

shear stress, Pa

10 1

10 0

31SL62 31SL67 31SL72 31SL77

100

101 102 strain rate, 1/s

103

Fig.15 (b): Shear stresses of the crosslinked PDMS colloid solutions at constant strain rates: open symbols for experimental data and lines from the estimations by Eq. (2).

100

Shear stress, Pa

10

25EM62 25EM67 1 25EM72 25EM77 25EM81

1

10

100

1000

strain rate, 1/s

Fig.16 (a): Shear stresses of the linear PDMS emulsions at constant strain rates: solid symbols for experimental data and lines from the estimations by Eq. (2).

100

shear stress, Pa

10

1

25SL62 25SL67 25SL72 25SL77

1

10

100

1000

strain rate, 1/s

Fig.16 (b): Shear stresses of the linear PDMS emulsions at constant strain rates: solid symbols for experimental data and lines from the estimations by Eq. (2).

Eq.(2)±o¨ì ?A ¤??C?óTable (4)¤?(5)¤¤ ?C ?i¤@¨B?i????¤¤?o?{?A ???p??¨??G¤§-°????¤O???????ì??°? ?A ?o?i?à?O¨ü¨ì???p?á§??¨???ó ???A??¤l??¨???¤§-è?w??(rigidity)?v?T?A ?G?H¤U±N±?°Q¨??b?y????¤¤ §ê?t??¨¤?? ?C¤??m¤¤????¤?[37]?A -Y?°¤@¤??y?y?é ?G ?h?n0=0?A?r <<1 ?B m=1?F-Y?°¤@°?????¨??G (highly compressed emulsions ?r?÷ 1 ?Bm=0.5)?h?i?í???¨ ?G

τ0 =
¨?¤¤?m

σφ Y (φ ) ?Α A=C(?r )(?g?m /R)1/2 R
: ??-±±i¤O R : ??¤l¤§?-§??b?| ?g: ?s?ò??¤§?H?× Y(?r )¤? C(?r ): ?é?n¤??v??¨???

1 3

??¤W-z?g????±o???G ·í?r?÷ 1 ???A ?n0=?m?r1/3 Y(?r )/R ?M??????¨s¤§compressed ±??ó???° 0.72≤≤ρ≤0.81 ±??p?A ???? Fig.17 ¤???¤¤ Y(?r )¤§?g??-??o?{ ?A ·í?r >0.9 ?? Y(?r )¤~???@?P??¤? ?F???b ?r <0.83 ???A Y(?r )¤§??¤??h???ó?-?w?A ?G°??]?G 1. ?ó 0.72≤≤ρ≤0.81 ¤§±??p¤U ?A Y(?r )?°¤@±`?? 2. ?b¤??P???r¤U???ó?s?ò?????¨?????P ?A?G?m¤]???°¤@±`?? ??≠→?≤ν 0 ???r
1/3

/R
1/3

?? Fig.17 ¤¤±o???n0 ?P?r

/2R ???T?¨?u?????Y ?F-?±o?`·N???O?A ¤??×

¤?¤l?q¤j¤p ?B???ì???????p??¨????G?????????Y ?A ?????G?í?????p?? ¨??G¤§?ó???A??¤l??¨?????-è?w?? ?A ?b?y?é???????y°?¤§?e?A

40
0.15

30
Y(? )

0.10

0.05

yield stress (τ ), Pa

20
0.00 0.7 0.8

0

?

0.9

1.0

10

0

DMS25 DMS31 DMS35 DMS41

-10

regression line 90 % Conf. interval

0.04

0.05

0.06

0.07

0.08

0.09

0.10

?1/3 /diameter

Fig.17: The viscous yield stresses of the compressed colloids depend on the variations of volume fractions and diameters. The inset is plotted with reported data. [37] (n): linear(?r >0.72) and crosslinked(?r >0.67) DMS25 (l): linear(?r >0.72 ) and crosslinked(?r >0.67) DMS31 (s): linear(?r =0.77) DMS35 (t): linear(?r =0.77) DMS41

[45-47] ¤?°??n?{?×[48-50]¤§?v?T?C???~?A¨ü????¨??G¤???¨ü????¨??G?b oscillatory-shear ?y?????è?q?ú¤¤?A ????¤??P?{?H?????A ??¤?±N?ó 4-7 ?`¤¤§@????°Q?× ?C

4-6-3 ?é?n¤??v(?r )???S??±`??(m?BA)¤§?v?T ¤@????¨? ?A ·í m=1???°¤@¤??y?y?é ?A ?? m=0.5???°¤@°??????y?é ?C
?? Fig.15 ¤? Fig.16 ¤¤±o???b¤??P???é?n¤??v¤U ?A ??¤??P??±`?? m ¤? A?A ¨??o?{??¤G±`???P?é?n¤??v????(Fig.18)?CFig.18(a)¤¤?i?????p?? ¨??G?H?é?n¤??v?W?[¨? m ?????? 1 ?v??¤U-°?F?????ì??¤§ m ?h???? ?-?w?A?H?é?n¤??v?W?[??¤U-° ?C?B·í?r <0.62 ???A ???p??¨??G???ü¤@ ¤??y?y?é(m?÷1)?A ??·í?r >0.62 ???A ???ì??¤????p??¨??G§??° shearthinning ?y?é?C ?????i??????¨s???s??¨??G¤§ m ?O???ó0.5??1 ???A ?G ???ó¤??y?y?é?P°?????¨??G??¤§?L??°?°ì?C?t?~?b?r ≤ 0.67 ???A ???ì ???P???p??¤§ A ???????A ??·í?r >?r c ??¤G??¤§ A ???H?é?n¤??v?W?[

???????W?[?A ??¤S?H???p??¨??G§ó?°?ú?? ?C¨?¤¤ A ???N?í¤§???z·N ?q?|????¤??m???X ?A????¤?±N?z?LCapillary number(Eq.(1))???ú?b 0.62≤≤ρ≤0.81 ?d?ò¤??A °??? A ?P?-§????|?M°?¤?¤O¤§???Y?°A/2R~ ?n?≤ν0?A ¨?¤¤?n ?≤ν0=?neff ?C

4-6-4 Ca(capillary number)¤§???ù???? ???ó Ca(capillary number)?????~¤?????¤§?}?a¤Q¤?-?-n?C?G?H¤U±N
°w??Ca ?[?H±?°Q
?C ¨??w?q¤w?ó??¤@??¤¤???ú ?G ?°°?¤?¤O

(?n)?P

1.2
m=1 for Newtonian fluid ( τ =0)
0

10

1.0

0.8

8

constant m

0.6

linear DMS31 crosslinked DMS31 m = 0 . 5 f o r h i g h l y c o n c e n t r a t e d e m u l s i o n s ( ?- > 1 )

6

constant A

0.4

4

0.2

2

0.0
linear DMS31 crosslinked DMS31

0

-0.2 0.60

0.65

0.70

0.75

0.80

0.85

volume fraction, ?

Fig.18 (a): Constants A & m are plotted against volume fraction. Solid symbols: constant m. Open symbols: constant A.

1.2
m=1 for Newtonian fluid ( τ = 0 )
0

10

1.0

linear DMS25 crosslinked DMS25

8

0.8 6

constant m

constant A

0.6
m=0.5 for highly concentrated emulsions ( ?- > 1 )

0.4

4

0.2

2

0.0

linear DMS25 crosslinked DMS25

0

-0.2 0.60

0.65

0.70

0.75

0.80

0.85

volume fraction, ?

Fig.18 (b): Constants A & m are plotted against volume fraction. Solid symbols: constant m. Open symbols: constant A.

Laplace pressure(?m /R)¤§¤??C ???ó uncompressed ¨??G??¨??A °?¤?¤O?? ?·-n§J?A Laplace pressure ¤~?à?????y°??F?????ó compressed ???~?? ¨??A shear stress ?b?y°??}?l?e?·??§J?A-°????¤O ?A ¨??á?b?y°????A¤¤ ?A§J?A??§???¤O ?C?G?b????¨s¤¤?w?q¤@??????¤O (effective stress?F?n
eff

)?G

τ eff = τ ? τ 0 =

Caσ R

(9)

????????¤O§Y?°¨??y°?¤¤????¤l??????§?????¤§¤O?A ¨??i±N?n eff ?í??
?¨¤U?? ?G

2R =

2Caσ 2Caσ = τ eff Aγ& m

(10)
1 2 a

¤@????¨? ?A -Y?°°?????¨??G (0.83 ≤ ?r ≤ 0.98)?A ?n???n0 ???P C
¤??A?????ó?Y¨???¤???¨t?B

?¨??

compressed ???A¤U ?A ¨??y?????è?]·|??

???D§????y°?(inhomogeneous flow)????-P°???¤O?P?????t?v?L???A ?G ??¤??A?? Eq.(10)?C???ó????¨s??¨???¤§???~?°?h¤???¨t ?A ?G?L?D§? ???y°?¤§±?§??o?? ?F?B¨??G?h?°?é?n¤??v??§C??±??p¤§¤U ?A ?n???n0
¤]¤?·|?P

C

1 2 a

?¨??¤? ?A?G????¨s???°?h¤???¨t????¤??i±???

Eq.(10)

¤§??¤???¨t?g????¨?±?°Q ?C-YEq.(10)¤¤¨????U¨ú???? ?A ?h?i±o ?G

&) ln(2R)= ln 2C a σ A ? m?ln( γ
-Y°??] Eq.(11)¤¤?G 1. ln 2C a σ A ?°±`??

(

)

(11)

(

)

& )?°±`?? 2. ln( γ

?ln(2R)?P?S??±`?? m ???¨?u?????Y Fig.19 §Y?°ln(2R)?P m ¤§???Y?? ?A ????¤¤?i??¤??×???ì???????p??¨?

¨?????¤¤?I?Z?i±o C a σ A ?]←°?ω↑∪ ?Α ≥ο←Ο∞Ν
???β⊕??∈??×?″??λ?∪?≥≥Θ??????∝Λ?Ψ↑?⊕??∈??±??∈∝ο∞? ?Α ∞Β?β?≠?∞ ←θ ?Α PDMS ¤§??§??q¨?¤?·|?P?é?n¤??v¤§§????q???P ?C¤??L???S§O??

?O ?A ???M?H¤W???Y?O?H?G?w?°°ò?? ?A?????p¤????á§??¨?ó???A??¤l¤§ ???G¤]?P???u?????Y???X ?A ?o?????b??§??o??¤§?e ?A ??????¤O?ì???O ??§J?A????-±?????? Tween 80 ???c?¨¤§ Laplace pressure?A ¨????A§J ?A?ó???A??¤l??¨-¤§????(modulus)¤~????§????o???C

4-6-5 ??????¤O (?neff)???y?????褧?v?T ?b 4-6-4 ?`¤¤¤w???L?A ??????¤O?°¨??y°?¤¤????¤l??????§?????
¤§¤O ?A ?B???ó?b¤??P?é?n¤??v¤U·|?y?¨¤??P???y?????è ?A?G°w?????[

& (Table 6) ?H±?°Q ?C ¨??i?????H¤U¤è?k¨D±o ?G???? Fig.19 ¤¤¤§±×?v?i±o γ
1. ?A?? Table(4)(5)¤¤?i±o±`?? m ¤? A ?±α?? Eq.(2)§Y?i±o?n eff Fig.20 §Y?°??????¤O?P?é?n¤??v¤§???Y?? ?A ?b?r <0.7 ?????ì???P???p ??¤§??????¤O??±????A ?????G?????b uncompressed ??±??p¤U ?A ?ó?? ?A??¤l¤§????¤?¨??H?v?T¨??y???? ?A ?]?°?b?????y°????°?e¨?¤???-n ??¨???¤l??§? ?F ?G?ó??±??p¤U ?A??????¤O?O???ó??¤l¤§??-±?}?????y ?¨?C???b?r >0.7 ???A ???p??¨??G¤§??????¤O?o?·¤j?ó???ì???A

70
the linear DMS31 regression line 90% Conf. interval

diameter (2R), ?m

diameter (2R), ? m

10

0.55

0.60

0.65

0.70

0.75

0.80

constant m

10
the crosslinked DMS31 regression line 90% Cof. interval

5 0.4

0.5

0.6

0.7

0.8

0.9

1.0

constant m

Fig.19 (a): The diameters of the crosslinked PDMS vary with the different constant m. The inset is for the linear PDMS emulsions.

diameter (2R), ? m

diameter (2R ), ?m

the crosslinked DMS25 regression line 90% Conf. interval

10

0.65

0.70

0.75

0.80

0.85

0.90

0.95

constant m

10 the linear DMS25 regression line 90% Cof. interval

0.50

0.55

0.60

0.65

0.70

0.75

0.80

constant m

Fig.19 (b): The diameters of the crosslinked PDMS vary with the different constant m. The inset is for the linear PDMS emulsions.

Table (6): Shear rate of the linear PDMS and crosslinked PDMS Polymer Linear DMS 25 Crosslinked DMS 25 Linear DMS 31 Crosslinked DMS 31 γ
?

0.032 0.086 0.021 0.051

2

τ τ

of the linear DMS31
eff

of the crosslinked DMS31
eff

1

τ , Pa

eff 0 0.60

0.65

0.70

0.75

0.80

0.85

volume fraction, ?

Fig.20 (a): Variations of effective stress depended on the dispersion phases’ volume fraction and different PDMS disperse.
2

τ τ

eff eff

of the linear DMS25 of the crosslinked DMS25

1

τ , Pa

eff 0 0.60

0.65

0.70

0.75

0.80

0.85

volume fraction, ?

Fig.20 (b): Variations of effective stress depended on the dispersion phases’ volume fraction and different PDMS disperse.

A ¤¤(Fig.18)?C ?t?~ ?A ?? Fig.19 ¤¤?i?? C a σ A ?°¤@±`?? Ca = τ eff (σ R ) ∝

?A ?????G????

?G

A/?m?g??¤??i±o

?neff ?? (?m /R)(A/?m )??A/2R ?ê?????G?o?{ (Fig.21)?A ?neff ?P A/2R ???T?°?u?????Y ?A ?B?????Y?P Fig.19 ¤¤ ln 2C a σ A ?°±`????±?§?????

(

)

?C

10

linear DMS31

1

crosslinked DMS31

τ , Pa

eff

0.1

0.01

0.01

0.1

1

A/2R

Fig.21 (a): Variations of effective stresses versus the values of A/2R: symbols for experimental data, lines for regression results.

linear DMS25 crosslinked DMS25 1

τ
0.1 0.01 0.01 0.1 1

eff

, Pa

A/2R

Fig.21 (b): Variations of effective stresses versus the values of A/2R: symbols for experimental data, lines for regression results.

4-7 Oscillatory(Dynamic)-shear ?y?????褧±?°Q ?e-±???????° Steady-shear
???A¤U¤§?y?????° ?A°???±??ó?~ Oscillatory-shear ¤§?y?????è¤]?°??¨s¤§-??I ?A ?H¤U±N?~?ò?`¤J±?°Q ?C

4-7-1 Yielding of the compressed colloid
Fig.22 ?°?b oscillatory-shear ¤U ?A compressed ??¤l¤§ stress ?? strain ??§@?? ?A ·í??????§C???A compressed ??¤l·|§e?{¤@?u???? power law ???Y ?A ¨?±×?v?° 1?A ???° linear?F???u?????Y?i¤????Xcompressed ?? ¤l¤§?y?????è?O¨ü?u?????°??±±¨?¨??i????¤¤?ê?u?[?H?×?? ?C ???b?? °??? strain ¤U ?A ¨?±×?v¤????ó 1?A ?h???° sublinear?A ?p Fig.22 ¤¤?ê?u ?????A ???? sublinear ¤§???Y?N?í??¤l¤§?y?????è???u?????°??±±¨? ??±?§??A ?à???°??¤??i°f??§? (irreversible deformation)???y?¨¤§???? (dissipation)?W?[??±±¨? ?A ?b¤U¤@?`±N·|???????ú ?C °???¤§?~?A-°???? ¤O (?ny)¤?-°??????(yield strain?F?^ y)¤]?i????¤¤?ê?u¤??ê?u????¤e?I ±o¨ì?A ???°-°???I (yield point)?A ???I§Y?N?í¨??G¤§?y?????°?O???u?? ?à???°?H?u?????°¤§¤????C

???ó?Y¨???¤???¨t???ì??¨??G??¨??A ¨??u????-°????¤O?M?u???? -°???????O?i±o???A ?o?N?í??°??פw??§????G?w?s¤§???]?H·N?w?V?? ?y?¨?ì?m?ù????·L¤p?B°? ?C???~ ?A ??¨s¤¤?i?i¤@¨B???X-°????¤O?P compressed ??¤l¤§???|¤??é?n¤??v???? ?C 4-6-1 ?`¤¤§?-????X?HEq(2) ¨??y-z-°????¤O?M¨??G¤§???Y ?A ¨?±o¨ì?n 0~?r 1/3 /2R ¤§???Y???C???M ?n0 ¤@???O?b steady-shear ???A¤U??±o¨ì ?A ???ó??¤@???z?×

100
31EM77 31EM81 31SL72 31SL77

10

stress, Pa

1

0.1

0.01 1E-4 1E-3 0.01 0.1 1 10

strain

Fig.22: Stress is a function of strain under oscillatory measurement at ?s = 1Hz.

?≤ρc ??

?A ?ó

steady-shear ¤? oscillatory ???A¤U??

±o¨ì¤§-°????¤O·|¤j-P???? ?A ?]???i???ù Princen's ¤§?z?× [42]?????ó ????¨s¤¤ (0.72 ≤ ?r ≤ 0.81?A?r?≤ρc )?C?P???a?A ?A?g????¤? Eq.(2)?i±o Fig.23?C?????i???ú ?A???M?b¤??P?????A¤U ?A ¤??×?H steady-shear ?? oscillatory-shear ¤U???i±o¨ì-°????¤O?P?r1/3 /2R ?¨??¤?¤§???Y ?C

4-7-2 Compressed ??¤l¤§?x?s????(storage modulus)¤?·l?? ????(loss modulus)
Compressed ???ì??¨??G¤§?x?s????(storage modulus?A ?H¤U???? G′)¤?·l?????? (loss modulus?A ?H¤U????G″)?p Fig.24 ?????A ??¤¤?b?Y ?B???ü§Y?°-°???I?A ¨??B?i?H???°¤???¤??¨¤G°??A ¤@?°?u??°? (elastic region)?A §YFig.22 ¤¤¤§ linear?A ?t¤@?°?H?u??°? (viscoelastic region)?° sublinear?C ?P???a?A ???ó DMS25 ¤? DMS31 ??¨??????P¤§?????A ?G?H ¤U±N?u°w??DMS31 ¨t??§@±?°Q ?C?? Fig.24(a)±o???A?b?u??°?¤??A G'>G"?A ?B·í??????¤p??
?A

G'?P?^?L???B???ó¤@-?

G0'?A ?? G0'?P?^?÷

0

??¤§?????????A ?t?~?i?? Table(4)(5)¤¤±o???C

¤??m¤¤???????????X [43] G0'~?r 1/3 (?r???r c)?m /R
' ¨?¤¤ G0?B?m¤?

(12)

R ?i???ê??±o?? ?A ?N¤J Eq.(12)§Y?i¨D±o?rc(?r c=0.75)?C

°???¤§?~?A ?u??°??u?P??¤l¤§·L¤p???c ?B §@??¤O¤???§???¨-??????????????A ¤@???W?L??°? ?A G'·|???@¤U-°?P?? G"·|??¤@-? blunt peak ?X (droplets

?{?C?b peak ????°??A G"?W?[??-ì?]?O???ó?G?w???c¤j?T?a

large-scale structural)-?·s±??C??-P?F?L¤F??peak?A G">G'?B G"?H??

20
0.15

0.10

Y(? )
0.05 0.00 0.7

15

yield stress(τ ), Pa

y

10

0.8

?

0.9

1.0

5
DMS25 DMS31 DMS35

0

DMS41 regression line 90 % Conf. interval

0.04

0.05

0.06

0.07

0.08

0.09

0.10

?1/3 /diameter

Fig.23: The viscous yield stresses of the compressed colloids depend on the variations of volume fractions and diameters. The inset is plotted with reported data. [37] (n): linear(?r >0.72) and crosslinked(?r >0.67) DMS25 (l): linear(?r >0.72 ) and crosslinked(?r >0.67) DMS31 (s): linear(?r =0.77) DMS35 (t): linear(?r =0.77) DMS41

1000 elastic region viscoelastic region

1000

100

100

G' & G", Pa

10

10

1 31EM77 31EM81

1

0.1 1E-4 1E-3 0.01 0.1 1 10

0.1

strain

Fig.24(a): The storage modules (open symbols) and the loss modules (solid symbols) of the compressed linear PDMS emulsions under oscillatory measurement at ?s = 1Hz.
1000
elastic region viscoelastic region

100

G'& G" , Pa

10

1
25EM77 25EM81

0.1 1E-3

0.01

0.1

1

10

strain

Fig.24(b): The storage modules (open symbols) and the loss modules (solid symbols) of the compressed linear PDMS emulsions under oscillatory measurement at ?s = 1Hz.

Fig.25 ?h?° compressed ???p??¨??G¤§?x?s????¤?·l???????A ???? ¤¤¤]?i??¨ì-°???I?????? ?A ?????G?O?Pcompressed ???ì??¨??G??±? §????ü?A ?P????¤]?i¤??°?u??¤??H?u??¤G°??A ¨?¤]?i?g?? Eq.(12)¨D ±o?r c(?r c=0.72)?C?? Fig.25(a)¤¤??¨ì 31SL77 ¤§ G"????¤@?e?s??¤W¤?
???D

peak?A ?B·í??????¤j???A G"¤U-°??±?§???

compressed ???ì??¨?

?G???w ?A ?o?i?à?O?]?????p¤????á ?A ?ó???A??¤l¤§-è?w???ó?y°????A ¤U?è§?¤F?i°f??§??????????y?¨ ?C???~?A 31SL77 ?b?u??°?¤? ?A G" ?W
?[?O?]?°??·L¤p???i°?????¤§?G ?C ????·L¤p?i°??O?P?G?w???c¤j?T?a

(droplets large-scale structural)-?·s±??C???y?¨¤§???G???P ?A ?? G"¤§¤U
-°???O???ó?b?H?u??°?¤? ?A ?????y°????°¤§?G ?A ?B ?C ¤??[

31SL72 ¤?¤j?ó

-°???I?? ?A G"??±?¤U-°

G"?L peak ?????A ???????b?H?u??°?¤?¨?

?L¤j?T-?·s±??C??±?§??o???A ???b??°?¤§????¤U?A ¨??y?????è¤S?P uncompressed ??±?§????ü?A ?????G±N?ó¤U?`??-z¤§ ?C

4-7-3 Uncompressed ??¤l¤§?x?s???? (storage modulus)¤?·l?? ????(loss modulus)
Fig.26 ?° uncompressed ¤? compressed ??¤l?ó?-?w?A¤?°?¤????A¤U ?i?ध?c?y?? ?C ·í?ó?-?w?A?? ?A ¤??פj??¤p?? uncompressed ??¤l?? ???V?ó?E?°?¨?p?°?X?é??¤§??¤j?????c?A ???o???E?°???°?h???°?E?X (flocculation)?A¨?·|¨ü¤Z±o??¤?¤O ?B?B?????X¤O?P?q¤l¤O¤§?v

1000
elastic region viscoelastic region

100

G' & G", Pa

10
elastic region viscoelastic region viscous region

1
disflocculation

31SL72 31SL77 0.1 1E-4

1E-3

0.01

0.1

1

10

strain

Fig.25 (a): The storage modules (open symbols) and the loss modules (solid symbols) of the compressed crosslinked PDMS colloidal solutions under oscillatory.
1000
elastic region viscoelastic region

100

G'& G" , Pa

10
elastic region viscoelastic region viscous region

1
disfloccutation 25SL72 25SL77

0.1 1E-4 1E-3 0.01 0.1 1 10

strain

Fig.25 (b): The storage modules (open symbols) and the loss modules (solid symbols) of the compressed crosslinked PDMS colloidal solutions under oscillatory.

Fig.26: Possible situations of the compressed and the uncompressed colloids at stationary and under shear. (a): Uncompressed colloids at stationary: the aggregation groups associated by colloids move randomly as illustrated by arrow bars. (b): Uncompressed colloids under shear: colloids individually move in the direction of external force. (c): Compressed colloids at stationary: colloids are unmovable due to the crowding contact. (d): Compressed colloids under shear: colloids are deformed and driven by external force.

Fig.26(a)?????C?t?~ ?A ???°?X?é??·|¨ü?s?ò??¤?¤l¤§?????B °??v?T???y?¨¤??W?h?B°? (random motion) ?A ?p Fig.26(a)¤§?b?Y???? ?F ¨??i??????¤??W?h?B°?¤§????¨????úuncompressed ??¤l?ó?^ →0 ?? ??¤@G0'¤§-??s?b
?C ??¤??a ?A

compressed ???A¤U¤§??¤l?A ???ó??????

¤§??¤??è§????L¤??W?h?B°????? ?A?p Fig.26(c)? ? ? ??A?????G?P compressed ??¤l?ó?y°??o???e??¤@-°????¤O¤§±?§??????C-Y?ó°?¤? §@??¤U ?A ??¤l·|¨ü§@??¤O¤§?v?T????°?¤???¤è?V??°? ?A ??¤j??¤?¤? ·|¤???±??? ?A ?p Fig.26(b)(d)?C ?? uncompressed ¤§??¤l?°?X?é¨ü°?¤? §@?????Q¤?????±?§? ?A ?y????¤W???° disflocculation?A¨??i§Q???? disflocculation ???°¨????ú uncompressed ???p??¨??G?ó°?¤????? (shear strain)¤U¨?G'¤? G"???S?í°?°ì ??¨??G¨?G'¤? G"¤§§???±?§? ¤§ G'?A G"???Y??
?C ????¤¤±o?? ?A ?C

Fig.27 ?° uncompressed ???ì

Fig.28 ?h?° uncompressed ???p??¨??G (viscoelastic

?A ?i¨?¨??S??¤??°?H?u??°?

region)?A disflocculation ¤??H??°? (viscous region)?C ?b?H?u??°?¤? ?A G'
?P

G"???H?^?W?[??-°§C

?A ?B¤j??¤?¤§

G"¤j?ó

G'?A ?o·N¨????]?°?y°?
?C

?y?¨¤??i°f??§????????W?[

?A ±±¨?¤F?y?????è

???~

?A

Mason et al ?????X?Hentropic effects ¨????ú??¤???¨t
?A ?ê??¤¤±o¨ì?ú????

uncompressed ???ì??¨??G¤§ G'?C ?]??
???ó??¤l?E?°???¨¤§?°?X?é????¤??W?h?B°????y?¨ °??á ???? ?A

G'?i?à?O
?C ???L¤F?H?u??

G'¤? G"??°±¤?¤U-°

?F ??¤??a

?A ¤G???????H?????W?[??¤W¤?¤§

?A ????°??h??§@

disflocculation?C?ó??°?¤??A G'???W?[?i?à?O?]
?A ?P??

?°?X?é?Q¤??????y?¨ -P ?C ?~

G"???W?[?O°_?]?ó?°?X?é??-?·s±??C??
?A ?B·í

disflocculation ¤§?á?h?°?H??°??A G'?}?l???@¤U-°

10

disflocculation viscoelastic region viscous region

1

G' & G", Pa
0.1

31EM67 31EM72

0.01 1E-3 0.01 0.1 1 10

Fig.27(a): The storage modules (open symbols) and the loss modules (solid symbols) of the uncompressed colloids under oscillatory measurement at ?s = 1Hz

strain

10

disflocculation viscoelastic region viscous region

G'& G" , Pa

1

0.1
25EM67 25EM72

1E-3

0.01

0.1

1

10

strain

Fig.27(b): The storage modules (open symbols) and the loss modules (solid symbols) of the uncompressed colloids under oscillatory measurement at ?s = 1Hz

viscous region

10

disflocculation viscoelastic region

G' & G", Pa

1

0.1

31SL62 31SL67
0.01 1E-3 0.01 0.1 1 10

strain

Fig.28(a): The storage modules (open symbols) and the loss modules (solid symbols) of the uncompressed colloids under oscillatory measurement at ?s = 1Hz

10
disflocculation viscoelastic region viscuos region

1

G'& G" , Pa
0.1
25SL62 25SL67

1E-3

0.01

0.1

1

10

strain

Fig.28(b): The storage modules (open symbols) and the loss modules (solid symbols) of the uncompressed colloids under oscillatory measurement at ?s = 1Hz

G'?A ?o?N?í??¤l?b°?¤?§@??¤U¤w§????Q
¤??÷ ?A ¨????H?y°??????? ?C

???×
Part I
1. ????¨s?Y±??????p??¨?¨ú?N???ì??¨??G§@?°?z-G?D¨t??¤§???v ???A ?????p¤???¤§?????i?? FT-IR ????¤¤ Si-H ¤? C=C §l???p?b±` ·?¤U§?????¤?¨??H?×?W?[¤§±?§? ?A ?i???ú?b Pt ????¤?¤U?A PDMS ¨? ?G?????p¤???¤§?o???C 2. ?? NMRI ???v??¤¤?ú??????¤????G±o???A ????¨s??¨???¤§???p?? ¨??G???T?i§@?°?z-G?D???v¤§???v?? ?C 3. ?ó????¨s¤¤?A ¨??G¤§?é?n¤??v±??¤¤j?ó???¤¤p?ó ?pc ?? ?A?i?F¨ì-?
?U¤f?A¤è?K??¤?

NMRI ¤§°T??±j?פ§???? ?C

Part II
Steady-shear
1. ???y?????è±?°Q¤¤?i?o?{?A ????¨s??°t?s¤§¨??G?O???ó¤@¤??y?y ?é?P°?????¨??G?y?餧?L??°?°ì?C 2. ¤??×???ì???????p??¨??G¨?¤??????????|?A ???P?S??±`???? ln(2R) ??m ¤§???Y ?C 3. ???ó compressed ???A¤U ?A ???ì???????p??¨??G¤§-°????¤O?????n
0 ???r 1/3

/2R ¤§???Y?C °ò?ó???A ·í?^→0 ???A ¨?-°????¤O?O?P¤?¤l¤§§l

¤?¤O???????D?P?ó???A??¤l¤§-è?w?????? ?F???B?ó?y°????A???A?? ???p????¤l??¨-¤§?????v?T·|¨?±o¨?????????¤O???W?[¤§±?§? ?C

Oscillatory-shear
1. ?b compressed ???A¤U ?A ???ì???????p??¨??G¤§-°????¤O???P?a¤] ???ny???r
1/3

/2R ¤§???Y ?C
?A ?i?????ú??§?????

2. ·í?r ≥≤ρc ??

G′?∈ G′′?Α ±Ν←ψ⊕???←°??←°…υ??

°??∈?Η…υ??°? ?Χ 3. ·í?r <≤ρc ??
?A ?P???i?????ú??§?????

G′?∈ G′′?Α ±Ν←ψ⊕???←°??←°

?Η…υ??°? ?Β disflocculation ¤??H??°? ?C

[1] ?x?à?????÷?E????¤§?X?¨?P????

?ANSC830208M002097(1993).

[2] ? ? ? ? ? ? § t - f ° ò ? E ? ? ? ? ¤ § ? S ? ? ? P ¨ ? ? s ? y ¤ è ? k ¤ § ? ? ¨(I) s ?A

NSC842113M002004(1994).
[3] ? ? ? ? ? ? § t - f ° ò ? E ? ? ? ? ¤ § ? S ? ? ? P ¨ ? ? s ? y ¤ è ? k ¤ § ? ? ¨ (II) s ?A

NSC852113M002015(1995).
[4] ? ? ? ? ? ? ? E ¤ G - f ° ò ? ? ? ? ? O ? q ¤ § ¤ ? ? ? ? ? ?A ? c ? ? ¨ s

NSC862113M002003(1996).
[5] ? ? ? ? ? ? ? E ¤ G - f ° ò ? ? ? ? ? O ? q ¤ § ¤ ? ? ? ? ? ?A ? c ? ? ¨ s

NSC872113M002008(1997).
[6] ·s??¤???¤?°?¤?¤l?ì§?¤§???o [7] ·s?X?¨?P??¤???¤§??¨s [8] ·s?X?¨?P??¤???¤§??¨s ?ANSC830208M007101(1993).

(I)?A NSC862113M007028(1996). (II)?A NSC872113M007023(1997).

[9] S. W. Young, Magnetic Resonance Imaging: Basic Principles, 2nd,

New York (1991).
[10] M. A. Foster and J. M. S. Hutchison, Practical NMR Inaging, IRL

Prrss, UK (1987).
[11] S. B. Petersen, R. N. Muller and P.A. Rinck, An Introduction to

Biomedical Nuclear Magnetic Resonance, Jhieme Inc. New York, (1985).
[12] R. C. Brasch, New directions in the development of MR imaging

contrast media, Radiology, 183, 1-11(1992).
[13] H. J. Weinmann, R.C. Brasch, W. R. Press and G. E. Wesbey, Am. J.

Roentg, 142, 916(1984).
[14] R. B. Lauffer, “Paramagnetic metal complexes as water proton

relaxation agents for NMR imaging: theory and design”, Chem. Rev., 87, 901-927(1987).
[15] P. Sabine, R. Reszka, S. Wagner, K. J. Wolf, H. J. Buhr and G.

Berger, “Liposome-encapsulated superparamagnetic iron oxide particles as makers in as MRI-guided search for tumor-specific drug carriers”, Anti-Cancer Drug Des., 12(2), 125-135(1997).
[16] B. Hamm, A. E. Mahfouz, M. Taupitz, D. G. Mitchell, r. Nelson, E.

Haopern, A. Speidel, K. J. Wolf and S. Saini, “Liver metastases: improved detedtion with dynamic gasolinium-enhanced MR imaging”, Radiology, 202(3), 677-682(1997).
[17] J. P. Vallee, H. D. Sostman, J. R. MacFall and Rl E. Coleman,

“Quantification of myocarfdial perfusion with MRI and exogenous contrast agents”, Cardiology, 88, 90-105(1997).
[18] J. P. Kuhtz-buschbeck, K. Ehrhardt, S. Koehnlein, W. Radtke and P.

Heintzen, “Gadopentetate dimeglumine and iodinated contrast media. Hemodynamic side effects after bolus injections in pigs”, Invest. Radiol., 32(2), 111-119(1997).
[19] M. F.

Wendland, M. Saeed, K. Lauerma, N. Derugin, J.

Mintorovitch, F. M. Cavagna and C. B. Higgins, “Alteration in T1 of normal and reperfused infarcted myocardium after Gd-BOPTA versus Gd-DTPA on inversion recovery EPI”, Magnetic Resonance in Medicine, 37, 448-456(1997).
[20] R. S. Sheu, G. C. Liu, U. M. Wang, T. S. Jaw, H. M. Chen and Y. T.

Kuo, “Evaluation of Fe- (5-C 2H5-EHPG) as a contrast agent in MR imaging of hepatobiliary system”, Kaohsiung J. Med. Sci., 13(2), 7585(1997).
[21] Y. M. Wang, T. H. Cheng, G. C. Liu and R. S. Sheu, “Synthesis of

some N,N’-bis(amide) derivatives of diethylenetriaminepentaacetic acid and the stabilities of their complexes with Gd+3, Ca+3, Cu+2 and Zn+2”, J. Chem. Soc., Dalton Trans., 5, 833-837(1997).
[22] R. X.Zhuo, U. J. Fu and J. Liao, “Synthesis, relaxivity and

biodistribution of novel magnetic resonance imaging (MRI) contrast agents: polylysine (Gd-DTPA/DOTA) with pendent galactose moieties as hepatocyte-targeting groups”, Chin. Chem. Lett. 8(2), 157-160(1997).
[23] R. B. Lauffer and S. K. Larsen, “Hydroxy-aryl metal chelates for

diagnostic NMR imaging”, U. S. Patent 5,527,522(1996)
[24] G. A. Elgavish and S. K. Kim, “Lipophilic contrast agents for

diagnostic image analysis”, U. S. Patent 5,460,799(1995).
[25] J. P. Sadler and C.. T. Harding, “NMR contrast agents”, U. S. Patent

5,401,491(1995).
[26] B. Raduchel, H. Schmitt-Willich, H. Gries, G. Schuhmann-

Giampieri. H. Vogler and J. Conrad, “Use of amide complex compounds”, U. S. Patent 5,399,340(1995).
[27] R. D. Waigh, S. J. Anie and B. Wood, “Method for magnetic

resonance imaging of internal body tissues using polysiloxanes”, U. S. Patent 5,380,514(1995).
[28] A. Sachse, G. Roessling, J. Platzek, B. Misselwitz and A. Muehler,

“Contrast agent-loaded liposomes for use in MRI lymphography”, Ger. Offen. DE 19,529,922(1997).
[29] A. Muehler, Y. Frenzel, B. Misselwitz, H.-J. Weinmann and A.

Sachse, “Contrast agents for ventilation imaging of lung”, Ger. Offen. DE 19,529,921(1997).
[30] H. Schmitt-Willich, J. Platzek, A. Muehler, G. Adam and R.

Guenther, Ger. Offen., “Use of polymeric contrast agents of medium molecular weight for differentiation of benign and malignant tumors by modern imaging techniques”, Ger. Offen. DE 19,518,222(1996).
[31] D. Meyer, O. Russeaux, M. Schaefer and C. Simonot, “Preparation

of gadolinium poly (amino acid) complexes as MRI contrast agents”, Fr. Demande FR 2,736,051(1997).
[32] h. Takayanagi, “Preparation of 2,2-difluorolevulinic acid derivatives

as contrast agents for magnetic resonance imaging (MRI)”, JP 09,067,323(1997).
[33] P. Podieser, D. Schober, K. Hittmair, J. Kettenbach, J. Naude, F.

Herbst J. Karner-Hanusch, R. Segel, H. Imhof and J. Kramer, Begetable, “Vegetable oil as an MR contrast agent for rectal applications, Magnetic Resonance Imaging”, 13(7), 979-984(1995).
[34] H. M. Princen, “Rheology of foams and highly concentrated

emulsions, I. Elastic properties and yield stress of a cylindrical model system”, J. Colloid Interface Sci., 91(1), 160-175(1983).
[35] H. M. Princen, M. P. Aronson and J. C. Moser, “Highly concentrated

emulsions, II. Real systems. The effect of film thickness and contact angle on the volume fraction in creamed emulsions”, J. Colloid Interface Sci., 75(1), 246-270(1980).
[36] H. M. Princen and A. D. Kiss, “Rheology of foams and highly

concentrated emulsions, III. Static shear modulus”, J. Colloid Interface Sci., 112(2), 427-437(1986).
[37] H. M. Princen and A. D. Kiss, “Rheology of foams and highly

concentrated emulsions, IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions”, J. Colloid Interface Sci., 128(1), 176-187(1989).

[38] T. G. Mason and J. Bibette, “Emulsification in viscoelastic media”,

Phys. Rev. Lett., 77(16), 3481(1996).
[39] S. Chandrasekhar, “Hydrodynamic and hydromagnetic stability”,

Oxford, London (1961).
[40] M. P. Aronson, “Langmuir”, 5, 494(1989). [41] H. P. Grace, Chem. Eng. Commun., 14, 225(1982). [42] T. G. Mason, J. Bibette and D. A. Weitz, “Yielding and flow of

monodisperse emulsions”, J. Colloid Interface Sci., 179, 439(1996).
[43] T. G. Mason, J. Bibette and D. A. Weitz, “Elasticity of compressed

emulsions”, Phys. Rev. Lett., 75(10), 2051(1995).
[44] D. R. Thomas, Crosslinking of Polyimethylsiloxanes. In: Clarson SJ,

Semlyen JA, editors. Siloxane Polymers. PTR Prentice Hall, 567(1995).
[45] J. P. Hus, B. T. Liu, “Effect of Particle size on critical coagulation

concentration”, J Colloid Interface Sci., 198,186(1998).
[46] R. Pal, “Scaling of viscoelastic properties of emulsions”, J. Chem.

Eng., 70, 173(1998).
[47] R. Pal “Viscosity and storage/loss moduli for mixtures of fine and

coarse emulsions”, J. Chem. Eng., 67, 37(1997).
[48] C. Y. Chang, R. L. Powell, “Dynamic simulation of bimodal

suspensions of hydrodynamically interacting spherical-particles”, J. Fluid Mech, 253, 1(1993).
[49] B. E. Rodriguez and E. W. Kaler, “Binary-mixtures of monodisperse

latex pispersions. 1.Equilibrium structure”, Langmuir, 8, 2376(1992).
[50] D. C. Mose and T. A. Witten, “Droplet elasticity in weakly

compressed emulsions”, Europhys Fett, 22, 549(1993).


相关文章:
更多相关标签: